[en] Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B(1) (thiamine) and vitamin B(6) (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B(1) and B(6) contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B(1) and vitamin B(6) contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B(1) and B(6) contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B(1) and B(6) biosynthesis de novo enzymes (THIC for vitamin B(1), PDX1.3a-c and PDX2 for vitamin B(6)) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B(1) contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B(1) and B(6) biosynthesis in rice.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Mangel, Nathalie; Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland.
Fudge, Jared B; Vitamin & Environmental Stress Responses in Plants, Department of Botany and
Gruissem, Wilhelm; Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland. ; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
Fitzpatrick, Teresa B; Vitamin & Environmental Stress Responses in Plants, Department of Botany and
Vanderschuren, Hervé ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland.
Language :
English
Title :
Natural Variation in Vitamin B(1) and Vitamin B(6) Contents in Rice Germplasm.
Ahn I. P. Kim S. Lee Y. H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138, 1505–1515. doi: 10.1104/pp.104.058693, PMID: 15980201
Ahn I. P. Kim S. Lee Y. H. Suh S. C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143, 838–848. doi: 10.1104/pp.106.092627, PMID: 17158583
Akiyama T. Toda S. Kimura N. Mogami Y. Hanaoka Y. Tokorodani C. et al. (2020). Vitamin B6 in acute encephalopathy with biphasic seizures and late reduced diffusion. Brain Dev. 42, 402–407. doi: 10.1016/j.braindev.2020.02.002, PMID: 32107100
Allen L. H. Hampel D. Shahab-Ferdows S. York E. R. Adair L. S. Flax V. L. et al. (2015). Antiretroviral therapy provided to HIV-infected Malawian women in a randomized trial diminishes the positive effects of lipid-based nutrient supplements on breast-milk B vitamins. Am. J. Clin. Nutr. 102, 1468–1474. doi: 10.3945/ajcn.114.105106
Bailey R. L. West K. P. Jr. Black R. E. (2015). The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 66, 22–33. doi: 10.1159/000371618
Bali S. Robinson B. R. Sathuvalli V. Bamberg J. Goyer A. (2018). Single nucleotide polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS One 13:e0193415. doi: 10.1371/journal.pone.0193415, PMID: 29474475
Bechoff A. Chijioke U. Westby A. Tomlins K. I. (2018). ‘Yellow is good for you’: consumer perception and acceptability of fortified and biofortified cassava products. PLoS One 13:e0203421. doi: 10.1371/journal.pone.0203421, PMID: 30216344
Bhullar N. K. Gruissem W. (2013). Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol. Adv. 31, 50–57. doi: 10.1016/j.biotechadv.2012.02.001, PMID: 22343216
Bilski P. Li M. Y. Ehrenshaft M. Daub M. E. Chignell C. F. (2000). Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71, 129–134. doi: 10.1562/0031-8655(2000)071<0129:SIPVBP>2.0.CO;2, PMID: 10687384
Bird J. K. Murphy R. A. Ciappio E. D. McBurney M. I. (2017). Risk of deficiency in multiple concurrent micronutrients in children and adults in the United States. Nutrients 9:655. doi: 10.3390/nu9070655, PMID: 28672791
Bocobza S. Adato A. Mandel T. Shapira M. Nudler E. Aharoni A. (2007). Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev. 21, 2874–2879. doi: 10.1101/gad.443907, PMID: 18006684
Bocobza S. E. Malitsky S. Araujo W. L. Nunes-Nesi A. Meir S. Shapira M. et al. (2013). Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25, 288–307. doi: 10.1105/tpc.112.106385, PMID: 23341335
Boubakri H. Wahab M. A. Chong J. Bertsch C. Mliki A. Soustre-Gacougnolle I. (2012). Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiol. Biochem. 57, 120–133. doi: 10.1016/j.plaphy.2012.05.016
Bouis H. E. Saltzman A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 12, 49–58. doi: 10.1016/j.gfs.2017.01.009, PMID: 28580239
Chang S. Puryear J. Cairney J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116. doi: 10.1007/BF02670468
Chebotarov D. Borja F. N. Detras J. Abriol-Santos J. M. McNally K. L. Mansueto L. et al. (2016). Rice SNP-seek database update: new SNPs, indels, and queries. Nucleic Acids Res. 45, D1075–D1081. doi: 10.1093/nar/gkw1135, PMID: 27899667
Chen H. Xiong L. (2009). Enhancement of vitamin B6 levels in seeds through metabolic engineering. Plant Biotechnol. J. 7, 673–681. doi: 10.1111/j.1467-7652.2009.00433.x, PMID: 19656333
Colinas M. Eisenhut M. Tohge T. Pesquera M. Fernie A. R. Weber A. P. et al. (2016). Balancing of B6 vitamers is essential for plant development and metabolism in Arabidopsis. Plant Cell 28, 439–453. doi: 10.1105/tpc.15.01033
Colinas M. Fitzpatrick T. B. (2015). Natures balancing act: examining biosynthesis de novo, recycling and processing damaged vitamin B metabolites. Curr. Opin. Plant Biol. 25, 98–106. doi: 10.1016/j.pbi.2015.05.001, PMID: 26005929
Coquille S. Roux C. Mehta A. Begley T. P. Fitzpatrick T. B. Thore S. (2013). High-resolution crystal structure of the eukaryotic HMP-P synthase (THIC) from Arabidopsis thaliana. J. Struct. Biol. 184, 438–444. doi: 10.1016/j.jsb.2013.10.005, PMID: 24161603
Croft M. T. Moulin M. Webb M. E. Smith A. G. (2007). Thiamine biosynthesis in algae is regulated by riboswitches. Proc. Natl. Acad. Sci. U. S. A. 104, 20770–20775. doi: 10.1073/pnas.0705786105, PMID: 18093957
Czégény G. Kőrösi L. Strid Å. Hideg É. (2019). Multiple roles for vitamin B(6) in plant acclimation to UV-B. Sci. Rep. 9:1259. doi: 10.1038/s41598-018-38053-w, PMID: 30718682
de Pee S. (2014). Proposing nutrients and nutrient levels for rice fortification. Ann. N. Y. Acad. Sci. 1324, 55–66. doi: 10.1111/nyas.12478, PMID: 25091403
Dell’Aglio E. Boycheva S. Fitzpatrick T. B. (2017). The pseudoenzyme PDX1.2 sustains vitamin B6 biosynthesis as a function of heat stress. Plant Physiol. 174, 2098–2112. doi: 10.1104/pp.17.00531, PMID: 28550206
Denslow S. A. Rueschhoff E. E. Daub M. E. (2007). Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol. Biochem. 45, 152–161. doi: 10.1016/j.plaphy.2007.01.007, PMID: 17344055
Denslow S. A. Walls A. A. Daub M. E. (2005). Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Mol. Plant Pathol. 66, 244–255. doi: 10.1016/j.pmpp.2005.09.004
Dhalla N. S. Takeda S. Elimban V. (2013). Mechanisms of the beneficial effects of vitamin B6 and pyridoxal 5-phosphate on cardiac performance in ischemic heart disease. Clin. Chem. Lab. Med. 51, 535–543. doi: 10.1515/cclm-2012-0553, PMID: 23314545
Dhir S. Tarasenko M. Napoli E. Giulivi C. (2019). Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Front. Psych. 10:207. doi: 10.3389/fpsyt.2019.00207
Dong W. Cheng Z. Wang X. Wang B. Zhang H. Su N. et al. (2011). Determination of folate content in rice germplasm (Oryza sativa L.) using tri-enzyme extraction and microbiological assays. Int. J. Food Sci. Nutr. 62, 537–543. doi: 10.3109/09637486.2011.555476, PMID: 21438705
Dong W. Cheng Z. J. Xu J. L. Zheng T. Q. Wang X. L. Zhang H. Z. et al. (2014). Identification of QTLs underlying folate content in milled rice. J. Integr. Agric. 13, 1827–1834. doi: 10.1016/S2095-3119(13)60537-7
Dong W. Stockwell V. O. Goyer A. (2015). Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering. Plant Cell Physiol. 56, 2285–2296. doi: 10.1093/pcp/pcv148, PMID: 26454882
Dong W. Thomas N. Ronald P. C. Goyer A. (2016). Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. Oryzae. Frontiers. Plant Sci. 7:616. doi: 10.3389/fpls.2016.00616, PMID: 27242822
Fitzpatrick T. B. (2011). “Vitamin B6 in plants: more than meets the eye,” in Advances in Botanical Research. eds. Rebeille F. Douce R. (Amsterdam: Academic Press), 1–38.
Fitzpatrick T. B. Basset G. J. Borel P. Carrari F. DellaPenna D. Fraser P. D. et al. (2012). Vitamin deficiencies in humans: can plant science help? Plant Cell 24, 395–414. doi: 10.1105/tpc.111.093120, PMID: 22374394
Fitzpatrick T. B. Chapman L. M. (2020). The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J. Biol. Chem. 295, 12002–12013. doi: 10.1074/jbc.REV120.010918, PMID: 32554808
Foley J. K. Michaux K. D. Mudyahoto B. Kyazike L. Cherian B. Kalejaiye O. et al. (2021). Scaling up delivery of biofortified staple food crops globally: paths to nourishing millions. Food Nutr. Bull. 42, 116–132. doi: 10.1177/0379572120982501, PMID: 33593095
Freitag S. Verrall S. R. Pont S. D. A. McRae D. Sungurtas J. A. Palau R. et al. (2018). Impact of conventional and integrated management systems on the water-soluble vitamin content in potatoes, field beans, and cereals. J. Agric. Food Chem. 66, 831–841. doi: 10.1021/acs.jafc.7b03509, PMID: 29257861
Fudge J. Mangel N. Gruissem W. Vanderschuren H. Fitzpatrick T. B. (2017). Rationalising vitamin B6 biofortification in crop plants. Curr. Opin. Biotechnol. 44, 130–137. doi: 10.1016/j.copbio.2016.12.004, PMID: 28086191
Gliszczyńska-Świgło A. (2006). Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays. Food Chem. 96, 131–136. doi: 10.1016/j.foodchem.2005.02.018
Gomes F. Bergeron G. Bourassa M. W. Fischer P. R. (2021). Thiamine deficiency unrelated to alcohol consumption in high-income countries: a literature review. Ann. N. Y. Acad. Sci. 1498, 46–56. doi: 10.1111/nyas.14569, PMID: 33576090
Goodstein D. M. Shu S. Howson R. Neupane R. Hayes R. D. Fazo J. et al. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944, PMID: 22110026
Govender L. Pillay K. Siwela M. Modi A. T. Mabhaudhi T. (2019). Consumer perceptions and acceptability of traditional dishes prepared with provitamin A-biofortified maize and sweet potato. Nutrients 11:1577. doi: 10.3390/nu11071577, PMID: 31336921
Goyer A. (2017). Thiamin biofortification of crops. Curr. Opin. Biotechnol. 44, 1–7. doi: 10.1016/j.copbio.2016.09.005, PMID: 27750185
Goyer A. Haynes K. G. (2011). Vitamin B1 content in potato: effect of genotype, tuber enlargement, and storage, and estimation of stability and broad-sense heritability. Am. J. Potato Res. 88, 374–385. doi: 10.1007/s12230-011-9203-6
Goyer A. Navarre D. A. (2007). Determination of folate concentrations in diverse potato germplasm using a trienzyme extraction and a microbiological assay. J. Agric. Food Chem. 55, 3523–3528. doi: 10.1021/jf063647x, PMID: 17419642
Goyer A. Picard M. Hellmann H. A. Mooney S. L. (2019). Effect of low temperature storage on the content of folate, vitamin B6, ascorbic acid, chlorogenic acid, tyrosine, and phenylalanine in potatoes. J. Sci. Food Agric. 99, 4842–4848. doi: 10.1002/jsfa.9750
Goyer A. Sweek K. (2011). Genetic diversity of thiamin and folate in primitive cultivated and wild potato (Solanum) species. J. Agric. Food Chem. 59, 13072–13080. doi: 10.1021/jf203736e, PMID: 22088125
Granda L. Rosero A. Benesova K. Pluhackova H. Neuwirthova J. Cerkal R. (2018). Content of selected vitamins and antioxidants in colored and nonpigmented varieties of quinoa, barley, and wheat grains. J. Food Sci. 83, 2439–2447. doi: 10.1111/1750-3841.14334, PMID: 30184268
Gregory J. F. III. (1998). Nutritional properties and significance of vitamin glycosides. Annu. Rev. Nutr. 18, 277–296. doi: 10.1146/annurev.nutr.18.1.277, PMID: 9786648
Guan J. C. Hasnain G. Garrett T. J. Chase C. D. Gregory J. Hanson A. D. et al. (2014). Divisions of labor in the thiamin biosynthetic pathway among tissues of maize. Front. Plant Sci. 5:370. doi: 10.3389/fpls.2014.00370, PMID: 25136345
Guo W. Lian T. Wang B. Guan J. Yuan D. Wang H. et al. (2019). Genetic mapping of folate QTLs using a segregated population in maize. J. Integr. Plant Biol. 61, 675–690. doi: 10.1111/jipb.12811, PMID: 30938052
Gylling B. Myte R. Schneede J. Hallmans G. Häggström J. Johansson I. et al. (2017). Vitamin B-6 and colorectal cancer risk: a prospective population-based study using 3 distinct plasma markers of vitamin B-6 status. Am. J. Clin. Nutr. 105, 897–904. doi: 10.3945/ajcn.116.139337, PMID: 28275126
Hanson A. D. Amthor J. S. Sun J. Niehaus T. D. Gregory J. F. Bruner S. D. et al. (2018). Redesigning thiamin synthesis: prospects and potential payoffs. Plant Sci. 273, 92–99. doi: 10.1016/j.plantsci.2018.01.019
Hanson A. D. Beaudoin G. A. McCarty D. R. Gregory J. F. (2016). Does abiotic stress cause functional B vitamin deficiency in plants? Plant Physiol. 172, 2082–2097. doi: 10.1104/pp.16.01371, PMID: 27807106
Hofmann M. Loubéry S. Fitzpatrick T. B. (2020). On the nature of thiamine triphosphate in Arabidopsis. Plant Direct 4:e00258. doi: 10.1002/pld3.258, PMID: 32885135
Hsieh P. H. Chung Y. H. Lee K. T. Wang S. Y. Lu C. A. Hsieh M. H. (2021). The rice PALE1 homolog is involved in the biosynthesis of vitamin B1. Plant Biotechnol. J. 19, 218–220. doi: 10.1111/pbi.13465
Huang W. K. Ji H. L. Gheysen G. Kyndt T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Mol. Plant Pathol. 17, 614–624. doi: 10.1111/mpp.12316
Huang S. Zhang J. Wang L. Huang L. (2013). Effect of abiotic stress on the abundance of different vitamin B6 vitamers in tobacco plants. Plant Physiol. Biochem. 66, 63–67. doi: 10.1016/j.plaphy.2013.02.010, PMID: 23500708
Isenberg-Grzeda E. Kutner H. E. Nicolson S. E. (2012). Wernicke-Korsakoff-syndrome: under-recognized and under-treated. Psychosomatics 53, 507–516. doi: 10.1016/j.psym.2012.04.008
Jain M. Nijhawan A. Tyagi A. K. Khurana J. P. (2006). Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem. Biophys. Res. Commun. 345, 646–651. doi: 10.1016/j.bbrc.2006.04.140, PMID: 16690022
Jha A. B. Gali K. K. Zhang H. Purves R. W. Tar’an B. Vandenberg A. et al. (2020). Folate profile diversity and associated SNPs using genome wide association study in pea. Euphytica 216, 18. doi: 10.1007/s10681-020-2553-8
Jin S. Zong Y. Gao Q. Zhu Z. Wang Y. Qin P. et al. (2019). Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295. doi: 10.1126/science.aaw7166
Johnson C. R. Fischer P. R. Thacher T. D. Topazian M. D. Bourassa M. W. Combs G. F. Jr. (2019). Thiamin deficiency in low- and middle-income countries: disorders, prevalences, previous interventions and current recommendations. Nutr. Health 25, 127–151. doi: 10.1177/0260106019830847, PMID: 30798767
Kennedy G. Burlingame B. (2003). Analysis of food composition data on rice from a plant genetic resoruces perspective. Food Chem. 80, 589–596. doi: 10.1016/S0308-8146(02)00507-1
Kim Y. N. Cho Y. O. (2014). Evaluation of vitamin B6 intake and status of 20- to 64-year-old Koreans. Nutr. Res. Pract. 8, 688–694. doi: 10.4162/nrp.2014.8.6.688, PMID: 25489409
Laborde D. Herforth A. Headey D. de Pee S. (2021). COVID-19 pandemic leads to greater depth of unaffordability of healthy and nutrient-adequate diets in low- and middle-income countries. Nat. Food 2, 473–475. doi: 10.1038/s43016-021-00323-8
Latt N. Dore G. (2014). Thiamine in the treatment of Wernicke encephalopathy in patients with alcohol use disorders. Intern. Med. J. 44, 911–915. doi: 10.1111/imj.12522
Lee A. S. D. (2021). The role of vitamin B6 in women's health. Nurs. Clin. N. Am. 56, 23–32. doi: 10.1016/j.cnur.2020.10.002, PMID: 33549283
Li J. Liu J. Wen W. E. Zhang P. Wan Y. Xia X. et al. (2018). Genome-wide association mapping of vitamins B1 and B2 in common wheat. Crop J. 6, 263–270. doi: 10.1016/j.cj.2017.08.002
Li K. T. Moulin M. Mangel N. Albersen M. Verhoeven-Duif N. M. Ma Q. et al. (2015). Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat. Biotechnol. 33, 1029–1032. doi: 10.1038/nbt.3318, PMID: 26448082
Liu Z. Zhao L. Man Q. Wang J. Zhao W. Zhang J. (2019). Dietary micronutrients intake status among Chinese elderly people living at home: data from CNNHS 2010–2012. Nutrients 11:1787. doi: 10.3390/nu11081787, PMID: 31382399
Livak K. J. Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408. doi: 10.1006/meth.2001.1262
Lu Y. Tian Y. Shen R. Yao Q. Wang M. Chen M. et al. (2020). Targeted, efficient sequence insertion and replacement in rice. Nat. Biotechnol. 38, 1402–1407. doi: 10.1038/s41587-020-0581-5, PMID: 32632302
Lussana F. Zighetti M. L. Bucciarelli P. Cugno M. Cattaneo M. (2003). Blood levels of homocysteine, folate, vitamin B6 and B12 in women using oral contraceptives compared to non-users. Thromb. Res. 112, 37–41. doi: 10.1016/j.thromres.2003.11.007, PMID: 15013271
Mangel N. Fudge J. B. Fitzpatrick T. B. Gruissem W. Vanderschuren H. (2017). Vitamin B1 diversity and characterization of biosynthesis genes in cassava. J. Exp. Bot. 68, 3351–3363. doi: 10.1093/jxb/erx196, PMID: 28859374
Mangel N. Fudge J. B. Li K. T. Wu T. Y. Tohge T. Fernie A. R. et al. (2019). Enhancement of vitamin B6 levels in rice expressing Arabidopsis vitamin B6 biosynthesis de novo genes. Plant J. 99, 1047–1065. doi: 10.1111/tpj.14379, PMID: 31063672
McNally K. L. Childs K. L. Bohnert R. Davidson R. M. Zhao K. Ulat V. J. et al. (2009). Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Natl. Acad. Sci. U. S. A. 106, 12273–12278. doi: 10.1073/pnas.0900992106
Mimura M. Zallot R. Niehaus T. D. Hasnain G. Gidda S. K. Nguyen T. N. D. et al. (2016). Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase. Plant Cell 28, 2683–2696. doi: 10.1105/tpc.16.00600, PMID: 27677881
Moccand C. Boycheva S. Surriabre P. Tambasco-Studart M. Raschke M. Kaufmann M. et al. (2014). The pseudoenzyme PDX1.2 boosts vitamin B6 biosynthesis under heat and oxidative stress in Arabidopsis. The journal of Bological. Chemistry 289, 8203–8216. doi: 10.1074/jbc.M113.540526, PMID: 24505140
Mooney S. Chen L. Kuhn C. Navarre R. Knowles N. R. Hellmann H. (2013). Genotype-specific changes in vitamin B6 content and the PDX family in potato. Biomed. Res. Int. 2013:389723. doi: 10.1155/2013/389723, PMID: 23971030
Moulin M. Nguyen G. T. Scaife M. A. Smith A. G. Fitzpatrick T. B. (2013). Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity. Proc. Natl. Acad. Sci. U. S. A. 110, 14622–14627. doi: 10.1073/pnas.1307741110, PMID: 23959877
Murashige T. Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x
Nan N. Wang J. Shi Y. Qian Y. Jiang L. Huang S. et al. (2020). Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. Plant Biotechnol. J. 18, 172–184. doi: 10.1111/pbi.13184, PMID: 31161713
Nelson C. J. Alexova R. Jacoby R. P. Millar A. H. (2014). Proteins with high turnover rate in barley leaves estimated by proteome analysis combined with in planta isotope labeling. Plant Physiol. 166, 91–108. doi: 10.1104/pp.114.243014, PMID: 25082890
Nix W. A. Zirwes R. Bangert V. Kaiser R. P. Schilling M. Hostalek U. et al. (2015). Vitamin B status in patients with type 2 diabetes mellitus with and without incipient nephropathy. Diabetes Res. Clin. Pract. 107, 157–165. doi: 10.1016/j.diabres.2014.09.058, PMID: 25458341
Noordally Z. B. Trichtinger C. Dalvit I. Hofmann M. Roux C. Zamboni N. et al. (2020). The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. Commun. Biol. 3, 209. doi: 10.1038/s42003-020-0927-z, PMID: 32372067
Nowak V. Du J. Charrondiere U. R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 193, 47–54. doi: 10.1016/j.foodchem.2015.02.111, PMID: 26433286
Onishi H. Sato I. Uchida N. Takahashi T. Furuya D. Ebihara Y. et al. (2021). High proportion of thiamine deficiency in referred cancer patients with delirium: a retrospective descriptive study. Eur. J. Clin. Nutr. 75, 1499–1505. doi: 10.1038/s41430-021-00859-9, PMID: 33514871
Ortigoza-Escobar J. D. Molero-Luis M. Arias A. Marti-Sanchez L. Rodriguez-Pombo P. Artuch R. et al. (2016). Treatment of genetic defects of thiamine transport and metabolism. Expert. Rev. Neurother. 16, 755–763. doi: 10.1080/14737175.2016.1187562, PMID: 27191787
Palmer L. D. Downs D. M. (2013). The thiamine biosynthetic enzyme ThiC catalyzes multiple turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites. J. Biol. Chem. 288, 30693–30699. doi: 10.1074/jbc.M113.500280, PMID: 24014032
Paul L. Ueland P. M. Selhub J. (2013). Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr. Rev. 71, 239–244. doi: 10.1111/nure.12014, PMID: 23550784
Porter K. M. Ward M. Hughes C. F. O'Kane M. Hoey L. McCann A. et al. (2019). Hyperglycemia and metformin use are associated with B vitamin deficiency and cognitive dysfunction in older adults. J. Clin. Endocrinol. Metab. 104, 4837–4847. doi: 10.1210/jc.2018-01791
Qin P. Lu H. Du H. Wang H. Chen W. Chen Z. et al. (2021). Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden genomic variations. Cell 184, 3542–3558.e16. doi: 10.1016/j.cell.2021.04.046, PMID: 34051138
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rapala-Kozik M. Kowalska E. Ostrowska K. (2008). Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. J. Exp. Bot. 59, 4133–4143. doi: 10.1093/jxb/ern253, PMID: 18940932
Rapala-Kozik M. Wolak N. Kujda M. Banas A. K. (2012). The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol. 12:2. doi: 10.1186/1471-2229-12-2, PMID: 22214485
Raschke M. Boycheva S. Crèvecoeur M. Nunes-Nesi A. Witt S. Fernie A. R. et al. (2011). Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J. 66, 414–432. doi: 10.1111/j.1365-313X.2011.04499.x, PMID: 21241390
Raschke M. Burkle L. Muller N. Nunes-Nesi A. Fernie A. R. Arigoni D. et al. (2007). Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC. Proc. Natl. Acad. Sci. U. S. A. 104, 19637–19642. doi: 10.1073/pnas.0709597104, PMID: 18048325
Riaz B. Liang Q. Wan X. Wang K. Zhang C. Ye X. (2019). Folate content analysis of wheat cultivars developed in the North China plain. Food Chem. 289, 377–383. doi: 10.1016/j.foodchem.2019.03.028, PMID: 30955626
Ribeiro D. T. Farias L. P. de Almeida J. D. Kashiwabara P. M. Ribeiro A. F. Silva-Filho M. C. et al. (2005). Functional characterization of the thi1 promoter region from Arabidopsis thaliana. J. Exp. Bot. 56, 1797–1804. doi: 10.1093/jxb/eri168, PMID: 15897230
Robinson B. R. Garcia Salinas C. Ramos Parra P. Bamberg J. Diaz de la Garza R. I. Goyer A. (2019). Expression levels of the γ-glutamyl hydrolase I gene predict vitamin B9 content in potato tubers. Agronomy 9:734. doi: 10.3390/agronomy9110734
Robinson B. Sathuvalli V. Bamberg J. Goyer A. (2015). Exploring folate diversity in wild and primitive potatoes for modern crop improvement. Genes 6, 1300–1314. doi: 10.3390/genes6041300
Rojo-Sebastián A. González-Robles C. García de Yébenes J. (2020). Vitamin B6 deficiency in patients with Parkinson disease treated with levodopa/carbidopa. Clin. Neuropharmacol. 43, 151–157. doi: 10.1097/wnf.0000000000000408, PMID: 32947426
Samsatly J. Bayen S. Jabaji S. H. (2020). Vitamin B6 is under a tight balance during disease development by rhizoctonia solani on different cultivars of potato and on Arabidopsis thaliana mutants. Front. Plant Sci. 11:875. doi: 10.3389/fpls.2020.00875
Shewry P. R. Van Schaik F. Ravel C. Charmet G. Rakszegi M. Bedo Z. et al. (2011). Genotype and environment effects on the contents of vitamins B1, B2, B3, and B6 in wheat grain. J. Agric. Food Chem. 59, 10564–10571. doi: 10.1021/jf202762b, PMID: 21863876
Singh J. Srivastava R. P. Gupta S. Basu P. S. Kumar J. (2016). Genetic variability for vitamin B9 and total dietary fiber in lentil (Lens culinaris L.) cultivars. Int. J. Food Prop. 19, 936–943. doi: 10.1080/10942912.2015.1048353
Sotelo A. Sousa V. Montalvo I. Hernandez M., and Hernandez-Aragon (1990). Chemical composition of different fractions of 12 Mexican varieties of rice obtained during milling. Cereal Chem. 67, 209–212.
Strobbe S. Van Der Straeten D. (2018). Toward eradication of B-vitamin deficiencies: considerations for crop biofortification. Front. Plant Sci. 9:443. doi: 10.3389/fpls.2018.00443, PMID: 29681913
Strobbe S. Verstraete J. Stove C. Van Der Straeten D. (2021a). Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnol. J. 19, 1253–1267. doi: 10.1111/pbi.13545, PMID: 33448624
Strobbe S. Verstraete J. Stove C. Van Der Straeten D. (2021b). Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. Plant Physiol. 186, 1832–1847. doi: 10.1093/plphys/kiab198
Sun J. Sigler C. L. Beaudoin G. A. W. Joshi J. Patterson J. A. Cho K. H. et al. (2019). Parts-prospecting for a high-efficiency thiamin thiazole biosynthesis pathway. Plant Physiol. 179, 958–968. doi: 10.1104/pp.18.01085, PMID: 30337452
Suzuki M. Wu S. Mimura M. Alseekh S. Fernie A. R. Hanson A. D. et al. (2020). Construction and applications of a B vitamin genetic resource for investigation of vitamin-dependent metabolism in maize. Plant J. 101, 442–454. doi: 10.1111/tpj.14535
Szydlowski N. Burkle L. Pourcel L. Moulin M. Stolz J. Fitzpatrick T. B. (2013). Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis. Plant J. 75, 40–52. doi: 10.1111/tpj.12195, PMID: 23551747
Tambasco-Studart M. Titiz O. Raschle T. Forster G. Amrhein N. Fitzpatrick T. B. (2005). Vitamin B6 biosynthesis in higher plants. Proc. Natl. Acad. Sci. U. S. A. 102, 13687–13692. doi: 10.1073/pnas.0506228102
The 3000 rice genomes project (2014). The 3,000 rice genomes project. GigaScience 3, 7. doi: 10.1186/2047-217X-3-7, PMID: 24872877
Titcomb T. J. Tanumihardjo S. A. (2019). Global concerns with B vitamin statuses: biofortification, fortification, hidden hunger, interactions, and toxicity. Compr. Rev. Food Sci. Food Saf. 18, 1968–1984. doi: 10.1111/1541-4337.12491, PMID: 33336961
Titiz O. Tambasco-Studart M. Warzych E. Apel K. Amrhein N. Laloi C. et al. (2006). PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis. Plant J. 48, 933–946. doi: 10.1111/j.1365-313X.2006.02928.x, PMID: 17227548
Tunc-Ozdemir M. Miller G. Song L. Kim J. Sodek A. Koussevitzky S. et al. (2009). Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol. 151, 421–432. doi: 10.1104/pp.109.140046, PMID: 19641031
Van Der Straeten D. Bhullar N. K. De Steur H. Gruissem W. MacKenzie D. Pfeiffer W. et al. (2020). Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 11, 5203. doi: 10.1038/s41467-020-19020-4, PMID: 33060603
Vanderschuren H. Boycheva S. Li K. T. Szydlowski N. Gruissem W. Fitzpatrick T. B. (2013). Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Front. Plant Sci. 4:143. doi: 10.3389/fpls.2013.00143, PMID: 23734155
Villareal C. P. Juliano B. O. (1989). Variability in contents of thiamine and riboflavin in brown rice, crude oil in brown rice and bran-polish, and silicon in hull of IR Rices. Plant Foods Hum. Nutr. 39, 287–297. doi: 10.1007/BF01091939, PMID: 2558375
Wachter A. Tunc-Ozdemir M. Grove B. C. Green P. J. Shintani D. K. Breaker R. R. (2007). Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19, 3437–3450. doi: 10.1105/tpc.107.053645, PMID: 17993623
Wang G. Ding X. Yuan M. Qiu D. Li X. Xu C. et al. (2006). Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation. Plant Mol. Biol. 60, 437–449. doi: 10.1007/s11103-005-4770-x, PMID: 16514565
Wang W. Mauleon R. Hu Z. Chebotarov D. Tai S. Wu Z. et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49. doi: 10.1038/s41586-018-0063-9, PMID: 29695866
Wang H. Wang D. Ouyang Y. Huang F. Ding G. Zhang B. (2017). Do Chinese children get enough micronutrients? Nutrients 9, 397. doi: 10.3390/nu9040397
Wei J. Ji J. S. (2020). Modification of vitamin B6 on the associations of blood lead levels and cardiovascular diseases in the US adults. BMJ Nutr. Preven. Health 3, 180–187. doi: 10.1136/bmjnph-2020-000088, PMID: 33521527
Whitfield K. C. Smith T. J. Rohner F. Wieringa F. T. Green T. J. (2021). Thiamine fortification strategies in low- and middle-income settings: a review. Ann. N. Y. Acad. Sci. 1498, 29–45. doi: 10.1111/nyas.14565, PMID: 33496051
Wilson M. P. Plecko B. Mills P. B. Clayton P. T. (2019). Disorders affecting vitamin B(6) metabolism. J. Inherit. Metab. Dis. 42, 629–646. doi: 10.1002/jimd.12060
Yang Y. Z. Ding S. Wang Y. Li C. L. Shen Y. Meeley R. et al. (2017). Small kernel2 encodes a glutaminase in vitamin B6 biosynthesis essential for maize seed development. Plant Physiol. 174, 1127–1138. doi: 10.1104/pp.16.01295, PMID: 28408540
Yazdani M. Zallot R. Tunc-Ozdemir M. de Crecy-Lagard V. Shintani D. K. Hanson A. D. (2013). Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. Phytochemistry 94, 68–73. doi: 10.1016/j.phytochem.2013.05.017, PMID: 23816351
Zallot R. Yazdani M. Goyer A. Ziemak M. J. Guan J. C. McCarty D. R. et al. (2014). Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. Biochem. J. 463, 145–155. doi: 10.1042/bj20140522
Zarei I. Brown D. G. Nealon N. J. Ryan E. P. (2017). Rice bran metabolome contains amino acids, vitamins & cofactors, and phytochemicals with medicinal and nutritional properties. Rice 10:24. doi: 10.1186/s12284-017-0157-2, PMID: 28547736
Zhang Y. Jin X. Ouyang Z. Li X. Liu B. Huang L. et al. (2015). Vitamin B6 contributes to disease resistance against Pseudomonas syringae pv. Tomato DC3000 and Botrytis cinerea in Arabidopsis thaliana. J. Plant Physiol. 175, 21–25. doi: 10.1016/j.jplph.2014.06.023, PMID: 25460872
Zhu C. Bortesi L. Baysal C. Twyman R. M. Fischer R. Capell T. et al. (2017). Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. 22, 38–52. doi: 10.1016/j.tplants.2016.08.009, PMID: 27645899
Zhu Y. Minović I. Dekker L. H. Eggersdorfer M. L. van Zon S. K. R. Reijneveld S. A. et al. (2020). Vitamin status and diet in elderly with low and high socioeconomic status: the lifelines-MINUTHE study. Nutrients 12, 2659. doi: 10.3390/nu12092659, PMID: 32878227