[en] Hydrogen line profiles measured from space-borne or ground-based instruments provide useful information to study the physical processes occurring in the proton aurora and to estimate the proton flux characteristics. The line shape of the hydrogen lines is determined by the velocity distribution of H atoms along the line-of-sight of the instrument. Calculations of line profiles of auroral hydrogen emissions were obtained using a Monte Carlo kinetic model of proton precipitation into the auroral atmosphere. In this model both processes of energy degradation and scattering angle redistribution in momentum and charge transfer collisions of the high-energy proton/hydrogen flux with the ambient atmospheric gas are considered at the microphysical level. The model is based on measured cross sections and scattering angle distributions and on a stochastic interpretation of such collisions. Calculations show that collisional angular redistribution of the precipitating proton/hydrogen beam is the dominant process leading to the formation of extended wings and peak shifts in the hydrogen line profiles. All simulations produce a peak shift from the rest line wavelength decreasing with increasing proton energy. These model predictions are confirmed by analysis of ground-based H-beta line observations from Poker Flat, showing an anti-correlation between the magnitude of the peak shift and the extent of the blue wing of the line. Our results also strongly suggest that the relative extension of the blue and red wings provides a much better indicator of the auroral proton characteristic energy than the position of the peak wavelength.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Shematovich, V. I.; Institute of Astronomy RAS, Moscow, Russian Federation
Bisikalo, D. V.; Institute of Astronomy RAS, Moscow, Russian Federation
Lummerzheim, D.; Geophysical Institute, University of Alaska, Fairbanks, Alaska, USA
Language :
English
Title :
A Monte Carlo model of auroral hydrogen emission line profiles
Basu, B., Jasperse, J. R., Robinson, R. M., Vondrak, R. R., and Evans, D. S.: Linear transport theory of auroral proton precipitation: A comparison with observations, J. Geophys. Res., 92, 5920-5932, 1987.
Basu, B., Jasperse, J. R., Strickland, D. J., and Daniel, R. E.: Transport theoretical model for the electron-proton-hydrogen atom aurora, 1, Theory., J. Geophys. Res.,98, 21 517-21 532, 1993.
Chua, D. H., Dymond, K. F., Budzien, S. A., McCoy, R. P., Gérard, J.-C., Coumans, V., Bisikalo, D. V., and Shematovich, V. I.: High resolution FUV observations of proton aurora., Geophys. Res. Lett., 30, 1948-1951, doi::10.1029/2003GL017830, 2003.
Cisneros, C., Alvarez, I., Barnett, C. F., and Ray, J. A.: Differential scattering and total cross sections of hydrogen and deuterium atoms in nitrogen, Phys. Rev., 14, 84-87, 1976.
Decker, D. T., Kozelov, B. V., Basu, B., Jasperse, J. R., and Ivanov, V. E.: Collisional degradation of the proton-H atom fluxes in the atmosphere: A comparison of theoretical techniques, J. Geophys. Res., 101, 26 947-26 960, 1996.
Eather, R. H.: Auroral proton precipitation and hydrogen emissions, Rev. Geophys.,5, 207-285, 1967.
Galand, M., Lilensten, J., Kofman, W., and Sidje, R. B.: Proton transport model in the ionosphere, 1. Multistream approach of the transport equations, J. Geophys. Res.,102, 22 261-22 272, 1997.
Galand, M., Lilensten, J., Kofman, W., and Lummerzheim, D.: Proton transport model in the ionosphere 2. Influence of magnetic mirroring and collisions on the angular redistribution in aproton beam, Ann. Geophys., 16, 1308-1321, 1998, SRef-ID: 1432-0576/ag/1998-16-1308.
Galand, M. and Richmond, A. D.: Magnetic mirroring in an incident proton beam, J. Geophys. Res., 104, 4447-4456, 1999.
Gao, R. S, Johnson, L. K., Hakes, C. L., Smith, K. A., and Stebbings, R. F.: Collisions of kilo-electron-volt H+ and He+ with molecules at small angles: Absolute differential cross sections for change transfer, Phys. Rev. A, 41, 5929-5933, 1990.
Gérard, J.-C., Hubert, B., Bisikalo, D. V., and Shematovich, V. I.: A model of the Lyman-α line profile in the proton aurora, J. Geophys. Res., 105, 15 795-15 806, 2000.
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159-1172, 1991.
Hubert, B., Gérard, J.-C., Shematovich, V. I., Bisikalo, D. V., and Solomon, S. C.: The role of proton precipitation in the excitation of the auroral FUV emissions, J. Geophys. Res., 106, 21 475-21 494, 2001.
Ivanov, M. S. and Rogazinskij, S. V.: Analysis of numerical techniques of the Direct Simulation Monte-Carlo method in the rarefied gas dynamics, Sov. J. Numer. Anal. Math. Model., 3, 453-472, 1988.
Johnson, L.K., Gao, R. S., Smith, K. A., and Stebbings, R. F.: Absolute differential cross sections for very-small-angle scattering of keV H and He atoms with H2 and N2, Phys. Rev. A, 38, 2794-2797, 1988.
Kozelov, B. V. and Ivanov, V. E.: Monte-Carlo calculation of proton-hydrogen atom transport in N2, Planet. Space Sci.,40, 1503-1511, 1992.
Lorentzen, D. A., Sigernes, F., and Deehr, C. S.: Modeling and observations of dayside auroral hydrogen emission Doppler profiles, J. Geophys. Res., 103, 17 479-17 488, 1998.
Lummerzheim, D. and Galand, M.: The profile of the hydrogen H-β emission line in proton aurora, J. Geophys. Res., 106, 23-32, 2001.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes in C-The Art of Scientific Computing, Cambridge University Press, 2nd edition, 1989.
Rees, M. H.: On the interaction of auroral protons with the Earth's atmosphere, Planet. Space Sci., 30, 463-472, 1982.
Shematovich, V. I., Bisikalo, D. V., and Gérard, J.-C.: A Kinetic model of the formation of the hot oxygen geocorona, I. Quiet geomagnetic conditions, J. Geophys. Res., 99, 23 217-23 228, 1994.
Sigernes, F.: Estimation of initial auroral proton energy fluxes from Doppler profiles, J. Atmos. Terr. Phys., 58, 1871-1883, 1996.
Smith, G. J., Johnson, L. K., Gao, R. S., Smith, K. A., and Stebbings, R. F.: Absolute differential cross sections for electron capture and loss by keV hydrogen atoms, Phys. Rev. A, 44, 5647-5652, 1991.
Synnes, S. A., Soraas, F., and Hansen, J. P.: Monte-Carlo simulations of proton aurora, J. Atm. S. Terr. Phys., 60, 1695-1705, 1998.
Van Zyl, B., Neumann, H., Le, T. Q., and Amme, R. C.: H+N2 and H+O2 collisions-experimental charge-production cross sections and differential scattering calculations, Phys. Rev. A, 18, 506-516, 1978.
Van Zyl, B. and Neumann, H.: H-α and H-β emission cross sections for low-energy H and H+ collisions with N2 and O2, J. Geophys. Res., 85, 6006-6010, 1980.
Van Zyl, B. and Neumann, H.: Lyman-α emission cross sections for low-energy H and H+ collisions with N2, and O2, J. Geophys. Res.,93, 1023-1027, 1988.
Vegard, L.: Hydrogen showers in the auroral region, Nature, 144, 1089-1091, 1939.