Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia.
Trombetti, Andrea; Al-Daghri, Nasser; Brandi, Maria Luisaet al.
2022 • In Nature Reviews. Endocrinology, 18 (6), p. 366-384
[en] X-linked hypophosphataemia (XLH) is the most frequent cause of hypophosphataemia-associated rickets of genetic origin and is associated with high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23). In addition to rickets and osteomalacia, patients with XLH have a heavy disease burden with enthesopathies, osteoarthritis, pseudofractures and dental complications, all of which contribute to reduced quality of life. This Consensus Statement presents the outcomes of a working group of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases, and provides robust clinical evidence on management in XLH, with an emphasis on patients' experiences and needs. During growth, conventional treatment with phosphate supplements and active vitamin D metabolites (such as calcitriol) improves growth, ameliorates leg deformities and dental manifestations, and reduces pain. The continuation of conventional treatment in symptom-free adults is still debated. A novel therapeutic approach is the monoclonal anti-FGF23 antibody burosumab. Although promising, further studies are required to clarify its long-term efficacy, particularly in adults. Given the diversity of symptoms and complications, an interdisciplinary approach to management is of paramount importance. The focus of treatment should be not only on the physical manifestations and challenges associated with XLH and other FGF23-mediated hypophosphataemia syndromes, but also on the major psychological and social impact of the disease.
Disciplines :
Laboratory medicine & medical technology Rheumatology Public health, health care sciences & services
Author, co-author :
Trombetti, Andrea; Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland ; Division of Geriatrics, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
Al-Daghri, Nasser; Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
Brandi, Maria Luisa; F.I.R.M.O. Foundation, University of Florence, Florence, Italy
Cannata-Andía, Jorge B; Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain ; Universidad de Oviedo, Oviedo, Spain ; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain ; Retic REDinREN-RICORS, 2040-ISCIII, Madrid, Spain
CAVALIER, Etienne ; Centre Hospitalier Universitaire de Liège - CHU > > Service de chimie clinique
Chandran, Manju; Complicated Metabolic Bone Disorders Clinic, Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
Chaussain, Catherine; Université de Paris, Institut des maladies musculo-squelettiques, URP2496, UFR Odontologie, Montrouge, France ; AP-HP, FHU DDS-Net, Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphore, Service médecine bucco-dentaire, Hôpital Bretonneau, GH Paris Nord Université de Paris, Paris, France
Cipullo, Lucia; Patient representative with XLH, Geneva, Switzerland
Cooper, Cyrus ; MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK ; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK ; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
Haffner, Dieter ; Department of Paediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
Harvengt, Pol ; XLH Belgium, Belgian association of patients with XLH (a member of the International XLH Alliance), Waterloo, Belgium
Harvey, Nicholas C ; MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK ; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
Javaid, Muhammad Kassim; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
Jiwa, Famida; Chair of the Committee of Patients Societies at the International Osteoporosis Foundation, Osteoporosis Canada, Toronto, Canada
Kanis, John A; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia ; Centre for Metabolic Bone Diseases, University of Sheffield Medical School, Sheffield, UK
Laslop, Andrea; Scientific Office, Federal Office for Safety in Health Care, Vienna, Austria
Laurent, Michaël R ; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium
Linglart, Agnès ; Paris-Saclay University, INSERM U1185, Le Kremlin-Bicêtre, France ; AP-HP, endocrinology and diabetes for children, Reference centre for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre, France
Marques, Andréa; Rheumatology Department, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal ; Health Sciences Research Unit: Nursing (UICiSA:E), Nursing School of Coimbra, Coimbra, Portugal
Mindler, Gabriel T ; Department of Paediatric Orthopaedics, Orthopaedic Hospital Speising, Vienna, Austria ; Vienna Bone and Growth Center, Vienna, Austria
Minisola, Salvatore ; Department of Clinical, Internal, Anaesthesiologic and Cardiovascular Sciences, 'Sapienza', Rome University, Rome, Italy
Yerro, María Concepción Prieto; Agencia Española de Medicamentos Y Productos Sanitarios, Madrid, Spain
Rosa, Mario Miguel ; Departamento de Neurociências, Laboratório de Farmacologia Clínica E Terapêutica Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
Seefried, Lothar ; Orthopedic Department, University of Würzburg, Würzburg, Germany
Vlaskovska, Mila; Medical Faculty, Department of Pharmacology, Medical University Sofia, Sofia, Bulgaria
Zanchetta, María Belén; Instituto de Investigaciones Metabólicas (IDIM), Universidad del Salvador, Buenos Aires, Argentina
Rizzoli, René ; Division of Bone Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland. rene.rizzoli@unige.ch
Interdisciplinary management of FGF23-related phosphate wasting syndromes: a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia.
The Working Group was entirely funded by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and Musculoskeletal Diseases (ESCEO). ESCEO received unrestricted educational grants to support its educational and scientific activities from non-governmental organizations, not-for-profit organizations, and non-commercial and corporate partners. The choice of topics, participants, content and agenda of the Working Groups, as well as the writing, editing, submission and reviewing of the manuscript are under the sole responsibility of ESCEO, without any influence from third parties. We thank A. Banerjee, Y. Sumi and R. Sadana (Department of Ageing and Life Course, World Health Organization, Geneva, Switzerland) for their participation and support of the working group meeting.A.T. has received fees for consulting from VIFOR. M.L.B. has received honoraria, consultancy and lecture fees and/or research grants from Abiogen, Alexion, Amgen, Amolyt, Bruno Farmaceutici, Calcilytix, Echolight, Eli Lilly, Kyowa Kirin, Servier, SPA, Theramex and UCB. E.C. is a consultant for DiaSorin, Fujirebio, IDS and Nittobo. C. Cooper has received lecture fees and consulting honoraria from Amgen, MSD, Eli Lilly, Procter & Gamble, Aventis, GSK/Roche, Novartis, Nycomed, Radius, Servier and Wyeth Pharmaceuticals. D.H. has received consultancy and lecture fees and/or research grants from Amgen, Chiesi and Kyowa Kirin. P.H. is an employee of GSK, but in that capacity has no financial interest in any project associated with the topic of this article. N.C.H. has received consultancy, lecture fees and honoraria from Alliance for Better Bone Health, AMGEN, MSD, Eli Lilly, Servier, UCS, Shire, Consilient Healthcare, Kyowa Kirin and Internis Pharma. M.K.J. has received grants and honoraria from Kyowa Kirin. M.R.L. has received consultancy and lecture fees from Alexion, Amgen, Kyowa Kirin, Menarini, Orifarm, Sandoz, Takeda, UCB and Will Pharma. A. Linglart has received lecture fees and/or research grants from NovoNordisk, Pfizer, Merck, Alexion and Kyowa Kirin. S.M. served as speaker for Abiogen, Amgen, Bruno Farmaceutici, Diasorin, Eli Lilly, Shire, Sandoz and Takeda, and on the advisory board of Abiogen, Kyowa Kirin, Pfizer and UCB. L.S. has received honoraria for lectures and advice from Abbvie, Amgen, Alexion, GSK, Kyowa Kirin, Eli Lilly, MSD, Novartis, Servier, Theramex and UCB, and research grants from Alexion, KyowaKirin and Novartis. M.B.Z. has received consultancy fees and lecture fees from Amgen, Eli Lilly and Ultragenyx. R.R. has received fees for lectures or advisory boards from Abiogen, Amgen, Danone, Echolight, European Milk Forum, Mithra, Nestlé, ObsEva, Pfizer Consumer Health, Radius Health, Rejunevate and Theramex. The remaining authors declare no competing interests.The Working Group was entirely funded by the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis and Musculoskeletal Diseases (ESCEO). ESCEO received unrestricted educational grants to support its educational and scientific activities from non-governmental organizations, not-for-profit organizations, and non-commercial and corporate partners. The choice of topics, participants, content and agenda of the Working Groups, as well as the writing, editing, submission and reviewing of the manuscript are under the sole responsibility of ESCEO, without any influence from third parties. We thank A. Banerjee, Y. Sumi and R. Sadana (Department of Ageing and Life Course, World Health Organization, Geneva, Switzerland) for their participation and support of the working group meeting.
Imel, E. A. & Econs, M. J. Approach to the hypophosphatemic patient. J. Clin. Endocrinol. Metab. 97, 696–706 (2012). DOI: 10.1210/jc.2011-1319
Carpenter, T. O., Imel, E. A., Holm, I. A., Jan de Beur, S. M. & Insogna, K. L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Miner. Res. 26, 1381–1388 (2011). DOI: 10.1002/jbmr.340
Haffner, D. et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 15, 435–455 (2019). DOI: 10.1038/s41581-019-0152-5
Rizzoli, R. & Bonjour, J. P. in Dynamics of Bone and Cartilage Metabolism 2nd edn (eds Seibel, M. J., Robins S. P. & Bilezikian J. P.) 345–360 (Academic Press, 2006).
Arnold, A. et al. Hormonal regulation of biomineralization. Nat. Rev. Endocrinol. 17, 261–275 (2021). DOI: 10.1038/s41574-021-00477-2
Xu, H., Bai, L., Collins, J. F. & Ghishan, F. K. Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am. J. Physiol. Cell Physiol. 282, C487–C493 (2002). DOI: 10.1152/ajpcell.00412.2001
Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004). DOI: 10.1359/JBMR.0301264
Feng, J. Q. et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet. 38, 1310–1315 (2006). DOI: 10.1038/ng1905
Liu, S. et al. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J. Biol. Chem. 278, 37419–37426 (2003). DOI: 10.1074/jbc.M304544200
Baum, M., Schiavi, S., Dwarakanath, V. & Quigley, R. Effect of fibroblast growth factor-23 on phosphate transport in proximal tubules. Kidney Int. 68, 1148–1153 (2005). DOI: 10.1111/j.1523-1755.2005.00506.x
Chanakul, A. et al. FGF-23 regulates CYP27B1 transcription in the kidney and in extra-renal tissues. PLoS ONE 8, e72816 (2013). DOI: 10.1371/journal.pone.0072816
Christakos, S. et al. Vitamin D and the intestine: review and update. J. Steroid Biochem. Mol. Biol. 196, 105501 (2020). DOI: 10.1016/j.jsbmb.2019.105501
Underwood, J. L. & DeLuca, H. F. Vitamin D is not directly necessary for bone growth and mineralization. Am. J. Physiol. 246, E493–E498 (1984).
Lieben, L. et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J. Clin. Invest. 122, 1803–1815 (2012). DOI: 10.1172/JCI45890
Dardenne, O., Prud’homme, J., Hacking, S. A., Glorieux, F. H. & St-Arnaud, R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). Bone 32, 332–340 (2003). DOI: 10.1016/S8756-3282(03)00023-1
Amling, M. et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140, 4982–4987 (1999). DOI: 10.1210/endo.140.11.7110
Sabbagh, Y., Carpenter, T. O. & Demay, M. B. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc. Natl Acad. Sci. USA 102, 9637–9642 (2005). DOI: 10.1073/pnas.0502249102
Woeckel, V. J. et al. 1α,25-(OH)2D3 acts in the early phase of osteoblast differentiation to enhance mineralization via accelerated production of mature matrix vesicles. J. Cell Physiol. 225, 593–600 (2010). DOI: 10.1002/jcp.22244
Goltzman, D. Functions of vitamin D in bone. Histochem. Cell Biol. 149, 305–312 (2018). DOI: 10.1007/s00418-018-1648-y
Lin, E. L. et al. Healing of vitamin D deficiency rickets complicating hypophosphatasia suggests a role beyond circulating mineral sufficiency for vitamin D in musculoskeletal health. Bone 136, 115322 (2020). DOI: 10.1016/j.bone.2020.115322
Ravid, M. & Robson, M. Proximal myopathy caused by latrogenic phosphate depletion. JAMA 236, 1380–1381 (1976). DOI: 10.1001/jama.1976.03270130042026
Portale, A. A., Halloran, B. P. & Morris, R. C. Jr Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus. Implications for the renal production of 1,25-dihydroxyvitamin D. J. Clin. Invest. 80, 1147–1154 (1987). DOI: 10.1172/JCI113172
Kerr, S., Kindt, J. & Daram, S. R. Hypophosphatemia associated with paraproteinemia: a case report and review of the literature. WMJ 106, 490–493 (2007).
Mays, J. A., Greene, D. N., Poon, A. & Merrill, A. E. Pseudohypophosphatemia associated with high-dose liposomal amphotericin B therapy. Clin. Biochem. 50, 967–971 (2017). DOI: 10.1016/j.clinbiochem.2017.05.016
Duncanson, G. O. & Worth, H. G. Pseudohypophosphataemia as a result of bilirubin interference. Ann. Clin. Biochem. 27, 253–257 (1990). DOI: 10.1177/000456329002700312
Alon, U. & Hellerstein, S. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr. Nephrol. 8, 250–251 (1994). DOI: 10.1007/BF00865491
Brodehl, J., Krause, A. & Hoyer, P. F. Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr. Nephrol. 2, 183–189 (1988). DOI: 10.1007/BF00862587
Walton, R. J. & Bijvoet, O. L. Nomogram for derivation of renal threshold phosphate concentration. Lancet 2, 309–310 (1975). DOI: 10.1016/S0140-6736(75)92736-1
Kenny, A. P. & Glen, A. C. Tests of phosphate reabsorption. Lancet 2, 158 (1973). DOI: 10.1016/S0140-6736(73)93112-7
Bistarakis, L., Voskaki, I., Lambadaridis, J., Sereti, H. & Sbyrakis, S. Renal handling of phosphate in the first six months of life. Arch. Dis. Child. 61, 677–681 (1986). DOI: 10.1136/adc.61.7.677
Seeman, E. et al. Production, degradation, and circulating levels of 1,25-dihydroxyvitamin D in health and in chronic glucocorticoid excess. J. Clin. Invest. 66, 664–669 (1980). DOI: 10.1172/JCI109902
Cianferotti, L. et al. The clinical use of vitamin D metabolites and their potential developments: a position statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the International Osteoporosis Foundation (IOF). Endocrine 50, 12–26 (2015). DOI: 10.1007/s12020-015-0606-x
Makris, K., Sempos, C. & Cavalier, E. The measurement of vitamin D metabolites part II–the measurement of the various vitamin D metabolites. Hormones 19, 97–107 (2020). DOI: 10.1007/s42000-020-00188-9
Makris, K. et al. Recommendations on the measurement and the clinical use of vitamin D metabolites and vitamin D binding protein – a position paper from the IFCC Committee on Bone Metabolism. Clin. Chim. Acta 517, 171–197 (2021). DOI: 10.1016/j.cca.2021.03.002
Herrmann, M., Farrell, C. L., Pusceddu, I., Fabregat-Cabello, N. & Cavalier, E. Assessment of vitamin D status–a changing landscape. Clin. Chem. Lab. Med. 55, 3–26 (2017). DOI: 10.1515/cclm-2016-0264
Souberbielle, J. C. et al. Serum calcitriol concentrations measured with a new direct automated assay in a large population of adult healthy subjects and in various clinical situations. Clin. Chim. Acta 451, 149–153 (2015). DOI: 10.1016/j.cca.2015.09.021
Higgins, V. et al. Pediatric reference intervals for 1,25-dihydroxyvitamin D using the DiaSorin LIAISON XL assay in the healthy CALIPER cohort. Clin. Chem. Lab. Med. 56, 964–972 (2018). DOI: 10.1515/cclm-2017-0767
Yoshiko, Y. et al. Mineralized tissue cells are a principal source of FGF23. Bone 40, 1565–1573 (2007). DOI: 10.1016/j.bone.2007.01.017
Liu, S. & Quarles, L. D. How fibroblast growth factor 23 works. J. Am. Soc. Nephrol. 18, 1637–1647 (2007). DOI: 10.1681/ASN.2007010068
Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005). DOI: 10.1210/jc.2004-1039
Saito, H. et al. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005). DOI: 10.1074/jbc.M408903200
Gohil, A. & Imel, E. A. FGF23 and associated disorders of phosphate wasting. Pediatr. Endocrinol. Rev. 17, 17–34 (2019).
Edmonston, D. & Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 16, 7–19 (2020). DOI: 10.1038/s41581-019-0189-5
Benet-Pages, A. et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone 35, 455–462 (2004). DOI: 10.1016/j.bone.2004.04.002
Liu, S. et al. Pathogenic role of Fgf23 in Hyp mice. Am. J. Physiol. Endocrinol. Metab. 291, E38–E49 (2006). DOI: 10.1152/ajpendo.00008.2006
Heijboer, A. C. et al. Determination of fibroblast growth factor 23. Ann. Clin. Biochem. 46, 338–340 (2009). DOI: 10.1258/acb.2009.009066
Souberbielle, J. C. et al. Evaluation of a new fully automated assay for plasma intact FGF23. Calcif. Tissue Int. 101, 510–518 (2017). DOI: 10.1007/s00223-017-0307-y
Ito, N. et al. Clinical performance of a novel chemiluminescent enzyme immunoassay for FGF23. J. Bone Miner. Metab. 39, 1066–1075 (2021). DOI: 10.1007/s00774-021-01250-1
Donate-Correa, J., Muros de Fuentes, M., Mora-Fernandez, C. & Navarro-Gonzalez, J. F. Pathophysiological implications of fibroblast growth factor-23 and Klotho and their potential role as clinical biomarkers. Clin. Chem. 60, 933–940 (2014). DOI: 10.1373/clinchem.2013.206649
El-Maouche, D. et al. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos. Int. 27, 2345–2353 (2016). DOI: 10.1007/s00198-016-3543-5
Piketty, M. L. et al. FGF23 measurement in burosumab-treated patients: an emerging treatment may induce a new analytical interference. Clin. Chem. Lab. Med. 58, e267–e269 (2020). DOI: 10.1515/cclm-2020-0460
Fischer, D. C. et al. Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann. Clin. Biochem. 49, 546–553 (2012). DOI: 10.1258/acb.2012.011274
Endo, I. et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone 42, 1235–1239 (2008). DOI: 10.1016/j.bone.2008.02.014
Beck, L. et al. Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J. Clin. Invest. 99, 1200–1209 (1997). DOI: 10.1172/JCI119276
Beck-Nielsen, S. S., Brock-Jacobsen, B., Gram, J., Brixen, K. & Jensen, T. K. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur. J. Endocrinol. 160, 491–497 (2009). DOI: 10.1530/EJE-08-0818
Endo, I. et al. Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr. J. 62, 811–816 (2015). DOI: 10.1507/endocrj.EJ15-0275
Hawley, S. et al. Prevalence and mortality of individuals with X-linked hypophosphatemia: a United Kingdom real-world data analysis. J. Clin. Endocrinol. Metab. 105, e871–e878 (2020). DOI: 10.1210/clinem/dgz203
Rafaelsen, S., Johansson, S., Raeder, H. & Bjerknes, R. Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur. J. Endocrinol. 174, 125–136 (2016). DOI: 10.1530/EJE-15-0515
Liu, C. et al. Earlier onset in autosomal dominant hypophosphatemic rickets of R179 than R176 mutations in fibroblast growth factor 23: report of 20 Chinese cases and review of the literature. Calcif. Tissue Int. 105, 476–486 (2019). DOI: 10.1007/s00223-019-00597-y
Wolf, M., Koch, T. A. & Bregman, D. B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 28, 1793–1803 (2013). DOI: 10.1002/jbmr.1923
Imel, E. A. et al. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J. Clin. Endocrinol. Metab. 96, 3541–3549 (2011). DOI: 10.1210/jc.2011-1239
Imel, E. A., Gray, A. K., Padgett, L. R. & Econs, M. J. Iron and fibroblast growth factor 23 in X-linked hypophosphatemia. Bone 60, 87–92 (2014). DOI: 10.1016/j.bone.2013.12.001
Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38, 1248–1250 (2006). DOI: 10.1038/ng1868
Levy-Litan, V. et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am. J. Hum. Genet. 86, 273–278 (2010). DOI: 10.1016/j.ajhg.2010.01.010
Kotwal, A. et al. Clinical and biochemical phenotypes in a family with ENPP1 mutations. J. Bone Miner. Res. 35, 662–670 (2020). DOI: 10.1002/jbmr.3938
Ferreira, C. R. et al. Ectopic calcification and hypophosphatemic rickets: natural history of ENPP1 and ABCC6 deficiencies. J. Bone Miner. Res. 36, 2193–2202 (2021). DOI: 10.1002/jbmr.4418
Rafaelsen, S. H. et al. Exome sequencing reveals FAM20c mutations associated with fibroblast growth factor 23-related hypophosphatemia, dental anomalies, and ectopic calcification. J. Bone Miner. Res. 28, 1378–1385 (2013). DOI: 10.1002/jbmr.1850
Brownstein, C. A. et al. A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008). DOI: 10.1073/pnas.0712361105
Gaucher, C. et al. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum. Genet. 125, 401–411 (2009). DOI: 10.1007/s00439-009-0631-z
Whyte, M. P., Schranck, F. W. & Armamento-Villareal, R. X-linked hypophosphatemia: a search for gender, race, anticipation, or parent of origin effects on disease expression in children. J. Clin. Endocrinol. Metab. 81, 4075–4080 (1996).
Thiele, S., Werner, R., Stubbe, A., Hiort, O. & Hoeppner, W. Validation of a next-generation sequencing (NGS) panel to improve the diagnosis of X-linked hypophosphataemia (XLH) and other genetic disorders of renal phosphate wasting. Eur. J. Endocrinol. 183, 497–504 (2020). DOI: 10.1530/EJE-20-0275
Beck-Nielsen, S. S., Brixen, K., Gram, J. & Brusgaard, K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J. Hum. Genet. 57, 453–458 (2012). DOI: 10.1038/jhg.2012.56
Wolf, M. et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. JAMA 323, 432–443 (2020). DOI: 10.1001/jama.2019.22450
Kalantar-Zadeh, K. et al. Parenteral iron therapy and phosphorus homeostasis: a review. Am. J. Hematol. 96, 606–616 (2021). DOI: 10.1002/ajh.26100
Minisola, F. et al. Mineral metabolism abnormalities in patients with prostate cancer: a systematic case controlled study. Endocrine 59, 338–343 (2018). DOI: 10.1007/s12020-017-1351-0
Savva, C., Adhikaree, J., Madhusudan, S. & Chokkalingam, K. Oncogenic osteomalacia and metastatic breast cancer: a case report and review of the literature. J. Diabetes Metab. Disord. 18, 267–272 (2019). DOI: 10.1007/s40200-019-00398-y
Abrahamsen, B., Smith, C. D. & Minisola, S. Epidemiology of tumor-induced osteomalacia in Denmark. Calcif. Tissue Int. 109, 147–156 (2021). DOI: 10.1007/s00223-021-00843-2
Jiajue, R. et al. Early discrimination between tumor-induced rickets/osteomalacia and X-linked hypophosphatemia in Chinese children and adolescents: a retrospective case-control study. J. Bone Miner. Res. 36, 1739–1748 (2021). DOI: 10.1002/jbmr.4331
Colangelo, L. et al. Long-term bone mineral density changes after surgical cure of patients with tumor-induced osteomalacia. Osteoporos. Int. 31, 1383–1387 (2020). DOI: 10.1007/s00198-020-05369-1
Zanchetta, M. B. et al. Impaired bone microarchitecture and strength in patients with tumor-induced osteomalacia. J. Bone Miner. Res. 36, 1502–1509 (2021). DOI: 10.1002/jbmr.4325
Takeuchi, Y. et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J. Clin. Endocrinol. Metab. 89, 3979–3982 (2004). DOI: 10.1210/jc.2004-0406
Hesse, E., Rosenthal, H. & Bastian, L. Radiofrequency ablation of a tumor causing oncogenic osteomalacia. N. Engl. J. Med. 357, 422–424 (2007). DOI: 10.1056/NEJMc070347
Jan de Beur, S. M. et al. Burosumab for the treatment of tumor-induced osteomalacia. J. Bone Miner. Res. 36, 627–635 (2021). DOI: 10.1002/jbmr.4233
Skrinar, A. et al. The lifelong impact of X-linked hypophosphatemia: results from a burden of disease survey. J. Endocr. Soc. 3, 1321–1334 (2019). DOI: 10.1210/js.2018-00365
Seefried, L., Smyth, M., Keen, R. & Harvengt, P. Burden of disease associated with X-linked hypophosphataemia in adults: a systematic literature review. Osteoporos. Int. 32, 7–22 (2021). DOI: 10.1007/s00198-020-05548-0
Imerslund, O. Craniostenosis and vitamin D resistant rickets. Acta Paediatr. 40, 449–456 (1951). DOI: 10.1111/j.1651-2227.1951.tb16509.x
Vega, R. A. et al. Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J. Neurosurg. Pediatr. 17, 694–700 (2016). DOI: 10.3171/2015.10.PEDS15273
Murthy, A. S. X-linked hypophosphatemic rickets and craniosynostosis. J. Craniofac. Surg. 20, 439–442 (2009). DOI: 10.1097/SCS.0b013e31819b9868
Veilleux, L. N., Cheung, M., Ben Amor, M. & Rauch, F. Abnormalities in muscle density and muscle function in hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 97, E1492–E1498 (2012). DOI: 10.1210/jc.2012-1336
Schubert, L. & DeLuca, H. F. Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch. Biochem. Biophys. 500, 157–161 (2010). DOI: 10.1016/j.abb.2010.05.029
Reid, I. R. et al. X-linked hypophosphatemia: a clinical, biochemical, and histopathologic assessment of morbidity in adults. Medicine 68, 336–352 (1989). DOI: 10.1097/00005792-198911000-00002
Liang, G., Katz, L. D., Insogna, K. L., Carpenter, T. O. & Macica, C. M. Survey of the enthesopathy of X-linked hypophosphatemia and its characterization in Hyp mice. Calcif. Tissue Int. 85, 235–246 (2009). DOI: 10.1007/s00223-009-9270-6
Faraji-Bellee, C. A. et al. Development of enthesopathies and joint structural damage in a murine model of X-linked hypophosphatemia. Front. Cell Dev. Biol. 8, 854 (2020). DOI: 10.3389/fcell.2020.00854
Econs, M. J. Conventional therapy in adults with XLH improves dental manifestations, but not enthesopathy. J. Clin. Endocrinol. Metab. 100, 3622–3624 (2015). DOI: 10.1210/jc.2015-3229
Cauliez, A. et al. Impact of early conventional treatment on adult bone and joints in a murine model of X-linked hypophosphatemia. Front. Cell Dev. Biol. 8, 591417 (2020). DOI: 10.3389/fcell.2020.591417
Orfanidou, T., Iliopoulos, D., Malizos, K. N. & Tsezou, A. Involvement of SOX-9 and FGF-23 in RUNX-2 regulation in osteoarthritic chondrocytes. J. Cell Mol. Med. 13, 3186–3194 (2009). DOI: 10.1111/j.1582-4934.2008.00678.x
Rothenbuhler, A. et al. High incidence of cranial synostosis and Chiari I malformation in children with X-linked hypophosphatemic rickets (XLHR). J. Bone Miner. Res. 34, 490–496 (2019). DOI: 10.1002/jbmr.3614
Riccio, A. R. et al. Minimally invasive surgical management of thoracic ossification of the ligamentum flavum associated with X-linked hypophosphatemia. World Neurosurg. 94, 580.e5–580.e10 (2016). DOI: 10.1016/j.wneu.2016.07.076
Chesher, D. et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J. Inherit. Metab. Dis. 41, 865–876 (2018). DOI: 10.1007/s10545-018-0147-6
Meister, M., Johnson, A., Popelka, G. R., Kim, G. S. & Whyte, M. P. Audiologic findings in young patients with hypophosphatemic bone disease. Ann. Otol. Rhinol. Laryngol. 95, 415–420 (1986). DOI: 10.1177/000348948609500418
Davies, M., Kane, R. & Valentine, J. Impaired hearing in X-linked hypophosphataemic (vitamin-D-resistant) osteomalacia. Ann. Intern. Med. 100, 230–232 (1984). DOI: 10.7326/0003-4819-100-2-230
Beck-Nielsen, S. S. et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif. Tissue Int. 87, 108–119 (2010). DOI: 10.1007/s00223-010-9373-0
Beck-Nielsen, S. S. et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J. Rare Dis. 14, 58 (2019). DOI: 10.1186/s13023-019-1014-8
Patzer, L. et al. Urinary supersaturation of calcium oxalate and phosphate in patients with X-linked hypophosphatemic rickets and in healthy schoolchildren. J. Pediatr. 135, 611–617 (1999). DOI: 10.1016/S0022-3476(99)70060-0
Nakamura, Y., Takagi, M., Takeda, R., Miyai, K. & Hasegawa, Y. Hypertension is a characteristic complication of X-linked hypophosphatemia. Endocr. J. 64, 283–289 (2017). DOI: 10.1507/endocrj.EJ16-0199
Andrukhova, O. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol. Med. 6, 744–759 (2014). DOI: 10.1002/emmm.201303716
Mitchell, D. M., Juppner, H. & Burnett-Bowie, S. M. FGF23 is not associated with age-related changes in phosphate, but enhances renal calcium reabsorption in girls. J. Clin. Endocrinol. Metab. 102, 1151–1160 (2017). DOI: 10.1210/jc.2016-4038
Schnedl, C., Fahrleitner-Pammer, A., Pietschmann, P. & Amrein, K. FGF23 in acute and chronic illness. Dis. Markers 2015, 358086 (2015). DOI: 10.1155/2015/358086
Alon, U. S. et al. Hypertension in hypophosphatemic rickets–role of secondary hyperparathyroidism. Pediatr. Nephrol. 18, 155–158 (2003). DOI: 10.1007/s00467-002-1044-6
Zhukouskaya, V. V. et al. Increased prevalence of overweight and obesity in children with X-linked hypophosphatemia. Endocr. Connect. 9, 144–153 (2020). DOI: 10.1530/EC-19-0481
Mindler, G. T. et al. Disease-specific gait deviations in pediatric patients with X-linked hypophosphatemia. Gait Posture 81, 78–84 (2020). DOI: 10.1016/j.gaitpost.2020.07.007
Muhlbauer, R. C. & Fleisch, H. Abnormal renal glucose handling in X-linked hypophosphataemic mice. Clin. Sci. 80, 71–76 (1991). DOI: 10.1042/cs0800071
Rasmussen, H. & Anast, C. in The Metabolic Basis of Inherited Disease 5th edn (eds Stanbury, J. B., Wyngaarden, J. B., Goldstein, J.L. & Brown, M. S.) 1743–1773 (McGraw Hill, 1983).
Dent, C. E. & Harris, H. Hereditary forms of rickets and osteomalacia. J. Bone Jt. Surg. Br. 38-B, 204–226 (1956). DOI: 10.1302/0301-620X.38B1.204
Freeman, S. & Dunsky, I. Resistant rickets. Am. J. Dis. Child. 79, 409–427 (1950).
Linglart, A. et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr. Connect. 3, R13–R30 (2014). DOI: 10.1530/EC-13-0103
Chaussain-Miller, C. et al. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J. Pediatr. 142, 324–331 (2003). DOI: 10.1067/mpd.2003.119
Makitie, O. et al. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 88, 3591–3597 (2003). DOI: 10.1210/jc.2003-030036
Hawley, S. et al. Higher prevalence of non-skeletal comorbidity related to X-linked hypophosphataemia: a UK parallel cohort study using CPRD. Rheumatology 60, 4055–4062 (2021). DOI: 10.1093/rheumatology/keaa859
Che, H. et al. Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur. J. Endocrinol. 174, 325–333 (2016). DOI: 10.1530/EJE-15-0661
Imel, E. A. & Carpenter, T. O. A practical clinical approach to paediatric phosphate disorders. Endocr. Dev. 28, 134–161 (2015). DOI: 10.1159/000381036
Verge, C. F. et al. Effects of therapy in X-linked hypophosphatemic rickets. N. Engl. J. Med. 325, 1843–1848 (1991). DOI: 10.1056/NEJM199112263252604
Sochett, E. et al. Growth and metabolic control during puberty in girls with X-linked hypophosphataemic rickets. Horm. Res. 61, 252–256 (2004).
Quinlan, C. et al. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr. Nephrol. 27, 581–588 (2012). DOI: 10.1007/s00467-011-2046-z
Balsan, S. & Tieder, M. Linear growth in patients with hypophosphatemic vitamin D-resistant rickets: influence of treatment regimen and parental height. J. Pediatr. 116, 365–371 (1990). DOI: 10.1016/S0022-3476(05)82822-7
Costa, T. et al. X-linked hypophosphatemia: effect of calcitriol on renal handling of phosphate, serum phosphate, and bone mineralization. J. Clin. Endocrinol. Metab. 52, 463–472 (1981). DOI: 10.1210/jcem-52-3-463
Harrell, R. M., Lyles, K. W., Harrelson, J. M., Friedman, N. E. & Drezner, M. K. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J. Clin. Invest. 75, 1858–1868 (1985). DOI: 10.1172/JCI111900
Glorieux, F. H., Marie, P. J., Pettifor, J. M. & Delvin, E. E. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N. Engl. J. Med. 303, 1023–1031 (1980). DOI: 10.1056/NEJM198010303031802
Bettinelli, A., Bianchi, M. L., Mazzucchi, E., Gandolini, G. & Appiani, A. C. Acute effects of calcitriol and phosphate salts on mineral metabolism in children with hypophosphatemic rickets. J. Pediatr. 118, 372–376 (1991). DOI: 10.1016/S0022-3476(05)82149-3
Chin, Y. A. et al. Delayed diagnosis, difficult decisions: novel gene deletion causing X-linked hypophosphatemia in a middle-aged man with achondroplastic features and tertiary hyperparathyroidism. Case Rep. Endocrinol. 2021, 9944552 (2021).
Makitie, O., Kooh, S. W. & Sochett, E. Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin. Endocrinol. 58, 163–168 (2003). DOI: 10.1046/j.1365-2265.2003.01685.x
Lecoq, A. L. et al. Hyperparathyroidism in patients with X-linked hypophosphatemia. J. Bone Miner. Res. 35, 1263–1273 (2020). DOI: 10.1002/jbmr.3992
Carpenter, T. O. et al. Effect of paricalcitol on circulating parathyroid hormone in X-linked hypophosphatemia: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 99, 3103–3111 (2014). DOI: 10.1210/jc.2014-2017
Neal, M. D., Deslouches, B. & Ogilvie, J. The use of pre-operative imaging and intraoperative parathyroid hormone level to guide surgical management of tertiary hyperparathyroidism from X-linked hypophosphatemic rickets: a case report. Case J. 2, 7572 (2009). DOI: 10.4076/1757-1626-2-7572
Alon, U. S. et al. Calcimimetics as an adjuvant treatment for familial hypophosphatemic rickets. Clin. J. Am. Soc. Nephrol. 3, 658–664 (2008). DOI: 10.2215/CJN.04981107
Connor, J. et al. Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J. Clin. Endocrinol. Metab. 100, 3625–3632 (2015). DOI: 10.1210/JC.2015-2199
Biosse Duplan, M. et al. Phosphate and vitamin D prevent periodontitis in X-linked hypophosphatemia. J. Dent. Res. 96, 388–395 (2017). DOI: 10.1177/0022034516677528
Karaplis, A. C., Bai, X., Falet, J. P. & Macica, C. M. Mineralizing enthesopathy is a common feature of renal phosphate-wasting disorders attributed to FGF23 and is exacerbated by standard therapy in Hyp mice. Endocrinology 153, 5906–5917 (2012). DOI: 10.1210/en.2012-1551
Sullivan, W., Carpenter, T., Glorieux, F., Travers, R. & Insogna, K. A prospective trial of phosphate and 1,25-dihydroxyvitamin D3 therapy in symptomatic adults with X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 75, 879–885 (1992).
Goodyer, P. R., Kronick, J. B., Jequier, S., Reade, T. M. & Scriver, C. R. Nephrocalcinosis and its relationship to treatment of hereditary rickets. J. Pediatr. 111, 700–704 (1987). DOI: 10.1016/S0022-3476(87)80245-7
Alon, U., Lovell, H. B. & Donaldson, D. L. Nephrocalcinosis, hyperparathyroidism, and renal failure in familial hypophosphatemic rickets. Clin. Pediatr. 31, 180–183 (1992). DOI: 10.1177/000992289203100311
Smith, S. & Remmington, T. Recombinant growth hormone therapy for X-linked hypophosphatemia in children. Cochrane Database Syst. Rev. 10, CD004447 (2021).
Laurent, M. R. et al. Consensus recommendations for the diagnosis and management of X-linked hypophosphatemia in Belgium. Front. Endocrinol. 12, 641543 (2021). DOI: 10.3389/fendo.2021.641543
Carpenter, T. O. et al. Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med. 378, 1987–1998 (2018). DOI: 10.1056/NEJMoa1714641
Imel, E. A. et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet 393, 2416–2427 (2019). DOI: 10.1016/S0140-6736(19)30654-3
Carpenter, T. O. et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Invest. 124, 1587–1597 (2014). DOI: 10.1172/JCI72829
Imel, E. A. et al. Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J. Clin. Endocrinol. Metab. 100, 2565–2573 (2015). DOI: 10.1210/jc.2015-1551
Ruppe, M. D. et al. Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia. Bone Rep. 5, 158–162 (2016). DOI: 10.1016/j.bonr.2016.05.004
Insogna, K. L. et al. A randomized, double-blind, placebo-controlled, phase 3 trial evaluating the efficacy of burosumab, an anti-FGF23 antibody, in adults with X-linked hypophosphatemia: week 24 primary analysis. J. Bone Miner. Res. 33, 1383–1393 (2018). DOI: 10.1002/jbmr.3475
Insogna, K. L. et al. Burosumab improved histomorphometric measures of osteomalacia in adults with X-linked hypophosphatemia: a phase 3, single-arm, international trial. J. Bone Miner. Res. 34, 2183–2191 (2019). DOI: 10.1002/jbmr.3843
Portale, A. A. et al. Continued beneficial effects of burosumab in adults with X-linked hypophosphatemia: results from a 24-week treatment continuation period after a 24-week double-blind placebo-controlled period. Calcif. Tissue Int. 105, 271–284 (2019). DOI: 10.1007/s00223-019-00568-3
Goji, K., Ozaki, K., Sadewa, A. H., Nishio, H. & Matsuo, M. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait. J. Clin. Endocrinol. Metab. 91, 365–370 (2006). DOI: 10.1210/jc.2005-1776
Ruppe, M. D. X-Linked Hypophosphatemia. GeneReviews https://www.ncbi.nlm.nih.gov/books/NBK83985/ (2017).
Opsahl Vital, S. et al. Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone 50, 989–997 (2012). DOI: 10.1016/j.bone.2012.01.010
Coyac, B. R. et al. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103, 334–346 (2017). DOI: 10.1016/j.bone.2017.07.026
Boukpessi, T. et al. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif. Tissue Int. 79, 294–300 (2006). DOI: 10.1007/s00223-006-0182-4
Murayama, T., Iwatsubo, R., Akiyama, S., Amano, A. & Morisaki, I. Familial hypophosphatemic vitamin D-resistant rickets: dental findings and histologic study of teeth. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 90, 310–316 (2000). DOI: 10.1067/moe.2000.107522
Gaucher, C. et al. Dentin noncollagenous matrix proteins in familial hypophosphatemic rickets. Cell Tissues Organs 189, 219–223 (2009). DOI: 10.1159/000151382
Boukpessi, T. et al. Abnormal presence of the matrix extracellular phosphoglycoprotein-derived acidic serine- and aspartate-rich motif peptide in human hypophosphatemic dentin. Am. J. Pathol. 177, 803–812 (2010). DOI: 10.2353/ajpath.2010.091231
Boukpessi, T. et al. Osteopontin and the dento-osseous pathobiology of X-linked hypophosphatemia. Bone 95, 151–161 (2017). DOI: 10.1016/j.bone.2016.11.019
Barros, N. M. et al. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J. Bone Miner. Res. 28, 688–699 (2013). DOI: 10.1002/jbmr.1766
Gjorup, H., Beck-Nielsen, S. S., Hald, J. D. & Haubek, D. Oral health-related quality of life in X-linked hypophosphataemia and osteogenesis imperfecta. J. Oral. Rehabil. 48, 160–168 (2021). DOI: 10.1111/joor.13114
Hanisch, M., Bohner, L., Sabandal, M. M. I., Kleinheinz, J. & Jung, S. Oral symptoms and oral health-related quality of life of individuals with x-linked hypophosphatemia. Head. Face Med. 15, 8 (2019). DOI: 10.1186/s13005-019-0192-x
Novais, E. & Stevens, P. M. Hypophosphatemic rickets: the role of hemiepiphysiodesis. J. Pediatr. Orthop. 26, 238–244 (2006). DOI: 10.1097/01.bpo.0000218531.66856.b7
Danino, B. et al. Guided growth: preliminary results of a multinational study of 967 physes in 537 patients. J. Child. Orthop. 12, 91–96 (2018). DOI: 10.1302/1863-2548.12.170050
Stevens, P. M. & Klatt, J. B. Guided growth for pathological physes: radiographic improvement during realignment. J. Pediatr. Orthop. 28, 632–639 (2008). DOI: 10.1097/BPO.0b013e3181841fda
Sharkey, M. S., Grunseich, K. & Carpenter, T. O. Contemporary medical and surgical management of X-linked hypophosphatemic rickets. J. Am. Acad. Orthop. Surg. 23, 433–442 (2015). DOI: 10.5435/JAAOS-D-14-00082
Horn, A., Wright, J., Bockenhauer, D., Van’t Hoff, W. & Eastwood, D. M. The orthopaedic management of lower limb deformity in hypophosphataemic rickets. J. Child. Orthop. 11, 298–305 (2017). DOI: 10.1302/1863-2548.11.170003
Masquijo, J. J., Firth, G. B. & Sepulveda, D. Failure of tension band plating: a case series. J. Pediatr. Orthop. B 26, 449–453 (2017). DOI: 10.1097/BPB.0000000000000367
Larson, A. N. et al. Hip and knee arthroplasty in hypophosphatemic rickets. J. Arthroplast. 25, 1099–1103 (2010). DOI: 10.1016/j.arth.2009.06.023
Mills, E. S., Iorio, L., Feinn, R. S., Duignan, K. M. & Macica, C. M. Joint replacement in X-linked hypophosphatemia. J. Orthop. 16, 55–60 (2019). DOI: 10.1016/j.jor.2018.12.007
Steele, A. et al. Osteoarthritis, osteophytes, and enthesophytes affect biomechanical function in adults with X-linked hypophosphatemia. J. Clin. Endocrinol. Metab. 105, e1798–e1814 (2020). DOI: 10.1210/clinem/dgaa064
Mindler, G. T. et al. Lower limb deformity and gait deviations among adolescents and adults with X-linked hypophosphatemia. Front. Endocrinol. 12, 754084 (2021). DOI: 10.3389/fendo.2021.754084
Ammann, P. Patient involvement in centres of expertise for rare diseases. ProRaris https://www.proraris.ch/data/documents/Teilbericht_PIinCentresofExpertiseforRD_September2016_final.pdf (2016).
Padidela, R. et al. Patient-reported outcomes from a randomized, active-controlled, open-label, phase 3 trial of burosumab versus conventional therapy in children with X-linked hypophosphatemia. Calcif. Tissue Int. 108, 622–633 (2021). DOI: 10.1007/s00223-020-00797-x