Australia; Plant Physiological Phenomena; Databases, Factual; Phenotype; Plants; Statistics and Probability; Information Systems; Education; Computer Science Applications; Statistics, Probability and Uncertainty; Library and Information Sciences
Abstract :
[en] We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge.
Falster, Daniel ; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia. daniel.falster@unsw.edu.au
Gallagher, Rachael ; Department of Biological Sciences, Macquarie University, Sydney, Australia ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Wenk, Elizabeth H ; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Wright, Ian J ; Department of Biological Sciences, Macquarie University, Sydney, Australia
Indiarto, Dony; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Andrew, Samuel C; CSIRO Land and Water, Canberra, Australia
Baxter, Caitlan; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Lawson, James; NSW Department of Primary Industries, Orange, Australia
Allen, Stuart; Department of Biological Sciences, Macquarie University, Sydney, Australia
Fuchs, Anne; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
Monro, Anna; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
Kar, Fonti; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Adams, Mark A ; Swinburne University of Technology, Hawthorn, Australia
Ahrens, Collin W; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Alfonzetti, Matthew ; Department of Biological Sciences, Macquarie University, Sydney, Australia
Angevin, Tara; La Trobe University, Bundoora, Australia
Apgaua, Deborah M G ; Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
Arndt, Stefan ; University of Melbourne, Melbourne, Australia
Atkin, Owen K ; The Australian National University, Canberra, Australia
Atkinson, Joe ; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Auld, Tony; NSW Department of Planning Industry and Environment, Parramatta, Australia
Baker, Andrew; Southern Cross University, Lismore, Australia
von Balthazar, Maria; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
Bean, Anthony; Queensland Herbarium, Toowong, Australia
Blackman, Chris J; University of Tasmania, Hobart, Australia
Bloomfield, Keith; Imperial College, London, United Kingdom
Bowman, David M J S ; University of Tasmania, Hobart, Australia
Bragg, Jason; Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Brodribb, Timothy J ; University of Tasmania, Hobart, Australia
Buckton, Genevieve; James Cook University, Douglas, Australia
Burrows, Geoff; Charles Sturt University, Bathurst, Australia
Caldwell, Elizabeth; School of Biological Sciences, Monash University, Clayton, Australia
Camac, James ; Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Melbourne, Australia
Carpenter, Raymond; University of Adelaide, Adelaide, Australia
Catford, Jane A ; King's College London, London, United Kingdom
Cawthray, Gregory R ; University of Western Australia, Crawley, Australia
Cernusak, Lucas A ; College of Science and Engineering, James Cook University, Cairns, QLD, Australia
Chandler, Gregory; Department of Agriculture, Sydney, Australia
Chapman, Alex R ; Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
Cheal, David; Centre for Environmental Management, School of Health & Life Sciences, Federation University, Mount Helen, Australia
Cheesman, Alexander W; James Cook University, Douglas, Australia
Chen, Si-Chong; Royal Botanic Gardens, Richmond, Kew, United Kingdom
Choat, Brendan ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Clinton, Brook; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
Clode, Peta L ; University of Western Australia, Crawley, Australia
Coleman, Helen; Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
Cornwell, William K ; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Cosgrove, Meredith; The Australian National University, Canberra, Australia
Crisp, Michael; The Australian National University, Canberra, Australia
Cross, Erika; Charles Sturt University, Bathurst, Australia
Crous, Kristine Y; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Cunningham, Saul ; Fenner School of Environment and Society, The Australian National University, Canberra, Australia
Curran, Timothy ; Lincoln University, Lincoln, New Zealand
Curtis, Ellen; University of Technology Sydney, Sydney, Australia
Daws, Matthew I; Environment Department, Alcoa of Australia, Huntly, Western Australia, Australia
DeGabriel, Jane L; School of Marine and Tropical Biology, James Cook University, Douglas, Australia
Denton, Matthew D ; School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
Dong, Ning; Department of Biological Sciences, Macquarie University, Sydney, Australia
Du, Pengzhen; Lanzhou University, Lanzhou, China
Duan, Honglang; Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, China
Duncan, David H; University of Melbourne, Melbourne, Australia
Duncan, Richard P; Institute for Applied Ecology, University of Canberra, ACT, 2617, Canberra, Australia
Duretto, Marco ; National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Dwyer, John M ; School of Biological Sciences, The University of Queensland, St Lucia, Australia
Edwards, Cheryl; Melbourne Water, Melbourne, Australia
Esperon-Rodriguez, Manuel ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Evans, John R ; The Australian National University, Canberra, Australia
Everingham, Susan E; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Farrell, Claire; University of Melbourne, Melbourne, Australia
Firn, Jennifer ; Queensland University of Technology, Brisbane, Australia
Fonseca, Carlos Roberto ; Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Natal - RN, Brazil
French, Ben J ; University of Tasmania, Hobart, Australia
Frood, Doug; Pathways Bushland and Environment Consultancy, Sydney, Australia
Funk, Jennifer L; Department of Plant Sciences, University of California, Davis, USA
Geange, Sonya R ; The Australian National University, Canberra, Australia
Ghannoum, Oula; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Gleason, Sean M; USDA-ARS, WMSRU, Fort Collins, Colorado, 80526, USA
Gosper, Carl R ; Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
Gray, Emma ; Department of Biological Sciences, Macquarie University, Sydney, Australia
Groom, Philip K; Curtin University, Bentley, Australia
Grootemaat, Saskia; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Gross, Caroline; University of New England, Armidale, Australia
Guerin, Greg; Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
Guja, Lydia; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
Hahs, Amy K ; School of Ecosystem and Forest Sciences, The University of Melbourne, Melbourne, Australia
Harrison, Matthew Tom ; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
Hayes, Patrick E ; University of Western Australia, Crawley, Australia
Henery, Martin; arks Australia, Department of Agriculture, Water and the Environment, Hobart, Australia
Hochuli, Dieter ; School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
Howell, Jocelyn; Berowa NSW, Berowa, Australia
Huang, Guomin; Nanchang Institute of Technology, Nanchang, China
Hughes, Lesley; Department of Biological Sciences, Macquarie University, Sydney, Australia
Huisman, John; Western Australian Herbarium, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
Ilic, Jugoslav; University of Melbourne, Melbourne, Australia
Jagdish, Ashika; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Jin, Daniel ; School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
Jordan, Gregory; University of Tasmania, Hobart, Australia
Jurado, Enrique ; Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, Mexico
Kanowski, John; Australian Wildlife Conservancy, Sydney, Australia
Kasel, Sabine ; University of Melbourne, Melbourne, Australia
Kellermann, Jürgen; State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA, 5000, Australia
Kenny, Belinda; NSW Rural Fire Service, Sydney, Australia
Kohout, Michele; Department of Environment, Land, Water and Planning, Victoria, Australia
Kooyman, Robert M ; Department of Biological Sciences, Macquarie University, Sydney, Australia
Kotowska, Martyna M ; Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
Lai, Hao Ran ; University of Canterbury, Christchurch, New Zealand
Laliberté, Etienne ; Institut de recherche en biologie végétale, Université de Montréal, 4101 Sherbrooke Est, Montréal, H1X 2B2, Canada
Lambers, Hans ; University of Western Australia, Crawley, Australia
Lamont, Byron B ; Curtin University, Bentley, Australia
Lanfear, Robert; Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australia
van Langevelde, Frank ; Wildlife Ecology & Conservation Group, Wageningen University, Wageningen, The Netherlands
Laughlin, Daniel C ; Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
Laugier-Kitchener, Bree-Anne; Department of Biological Sciences, Macquarie University, Sydney, Australia
Laurance, Susan ; James Cook University, Douglas, Australia
Lehmann, Caroline E R ; Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
Leigh, Andrea ; University of Technology Sydney, Sydney, Australia
Leishman, Michelle R; Department of Biological Sciences, Macquarie University, Sydney, Australia
Lenz, Tanja; Department of Biological Sciences, Macquarie University, Sydney, Australia
Lepschi, Brendan; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
Lewis, James D ; Fordham University, New York City, NY, USA
Lim, Felix ; AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
Liu, Udayangani ; Royal Botanic Gardens, Richmond, Kew, United Kingdom
Lord, Janice ; University of Otago, Dunedin, New Zealand
Lusk, Christopher H; Environmental Research Institute, University of Waikato, Hamilton, New Zealand
Macinnis-Ng, Cate ; University of Auckland, Auckland, New Zealand
McPherson, Hannah; National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Magallón, Susana ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Manea, Anthony; Department of Biological Sciences, Macquarie University, Sydney, Australia
López-Martinez, Andrea; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Mayfield, Margaret ; School of Biological Sciences, The University of Queensland, St Lucia, Australia
McCarthy, James K ; Manaaki Whenua - Landcare Research, Lincoln, 7640, New Zealand
Meers, Trevor; Cumberland Ecology, Cumberland, Australia
van der Merwe, Marlien ; Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Metcalfe, Daniel J; CSIRO Land and Water, Canberra, Australia
Milberg, Per ; Linkoping University, Linkoping, Sweden
Mokany, Karel; CSIRO Land and Water, Canberra, Australia
Moles, Angela T ; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Moore, Ben D ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Moore, Nicholas; La Trobe University, Bundoora, Australia
Morgan, John W; La Trobe University, Bundoora, Australia
Morris, William ; University of Melbourne, Melbourne, Australia
Muir, Annette; Department of Environment, Land, Water and Planning, Victoria, Australia
Munroe, Samantha ; Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
Nicholson, Áine; University of Tasmania, Hobart, Australia
Nicolle, Dean; Currency Creek Arboretum, Currency Creek, Australia
Nicotra, Adrienne B; The Australian National University, Canberra, Australia
Niinemets, Ülo; Estonian University of Life Sciences, Tartu, Estonia
North, Tom; Centre for Australian National Biodiversity Research (a joint venture between Parks Australia and CSIRO), Canberra, ACT, Australia
O'Reilly-Nugent, Andrew; Institute for Applied Ecology, University of Canberra, ACT, 2617, Canberra, Australia
O'Sullivan, Odhran S; Leistershire County Council, Leicester, United Kingdom
Oberle, Brad; Division of Natural Sciences, New College of Florida, Sarasota, USA
Onoda, Yusuke; Graduate School of Agriculture, Kyoto University, Kyoto, Japan
Ooi, Mark K J ; Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, UNSW, Sydney, Australia
Osborne, Colin P ; University of Sheffield, Department of Animal and Plant Sciences, Sheffield, United Kingdom
Paczkowska, Grazyna; Western Australian Herbarium, Keiran McNamara Conservation Science Centre, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
Pekin, Burak; Istanbul Technical University, Eurasia Institute of Earth Sciences, Istanbul, Turkey
Guilherme Pereira, Caio; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
Pickering, Catherine; School of Environment and Science, Griffith University, Brisbane, Australia
Pickup, Melinda; Greening Australia, Brisbane, Australia
Pollock, Laura J; Department of Biology, McGill University, Montréal, Canada
Poot, Pieter; College of Science and Engineering, James Cook University, Cairns, QLD, Australia
Powell, Jeff R; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Power, Sally A ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Prentice, Iain Colin ; Imperial College, London, United Kingdom
Prior, Lynda; University of Tasmania, Hobart, Australia
Prober, Suzanne M; CSIRO Land and Water, Canberra, Australia
Read, Jennifer; School of Biological Sciences, Monash University, Clayton, Australia
Reynolds, Victoria; School of Biological Sciences, The University of Queensland, St Lucia, Australia
Richards, Anna E; CSIRO Land and Water, Canberra, Australia
Richardson, Ben; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
Roderick, Michael L ; The Australian National University, Canberra, Australia
Rosell, Julieta A ; Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
Rossetto, Maurizio; National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Rye, Barbara; Western Australian Herbarium, Department of Biodiversity, Conservation and Attractions, Western Australia, Kensington, Australia
Rymer, Paul D; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Sams, Michael A; School of Biological Sciences, The University of Queensland, St Lucia, Australia
Sanson, Gordon; School of Biological Sciences, Monash University, Clayton, Australia
Sauquet, Hervé ; National Herbarium of New South Wales, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Sydney, Australia
Schmidt, Susanne ; School of Agriculture and Food Science, University of Queensland, St Lucia, Australia
Schönenberger, Jürg ; Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
Schulze, Ernst-Detlef; Max-Planck Institute for Biogeochemistry, Jena, Germany
Sendall, Kerrie ; Rider University, Lawrence Township, Lawrenceville, NJ, USA
Sinclair, Steve ; Department of Plant Ecology and Ecosystems Research, University of Goettingen, Göttingen, Germany
Smith, Benjamin; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Smith, Renee; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Soper, Fiona; McGill University, Montreal, Canada
Sparrow, Ben ; Terrestrial Ecosystem Research Network, The School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
Standish, Rachel J ; Environmental and Conservation Sciences, Murdoch University, Murdoch, Australia
Staples, Timothy L; School of Biological Sciences, The University of Queensland, St Lucia, Australia
Stephens, Ruby; Department of Biological Sciences, Macquarie University, Sydney, Australia
Szota, Christopher; University of Melbourne, Melbourne, Australia
Taseski, Guy; Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Sydney, Australia
Tasker, Elizabeth; NSW Department of Planning Industry and Environment, Parramatta, Australia
Thomas, Freya; University of Melbourne, Melbourne, Australia
Tissue, David T; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Tjoelker, Mark G ; Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
Tng, David Yue Phin ; Centre for Rainforest Studies, School for Field Studies, Yungaburra, Queensland, 4872, Australia
Tomlinson, Kyle; Xishuangbanna Tropical Botanic Garden, Yunnan, China
Turner, Neil C ; University of Western Australia, Crawley, Australia
Veneklaas, Erik J ; University of Western Australia, Crawley, Australia
Venn, Susanna ; Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Australia
Vesk, Peter ; University of Melbourne, Melbourne, Australia
Vlasveld, Carolyn ; School of Biological Sciences, Monash University, Clayton, Australia
Vorontsova, Maria S ; Royal Botanic Gardens, Richmond, Kew, United Kingdom
Warren, Charles A; School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
Warwick, Nigel ; University of New England, Armidale, Australia
Weerasinghe, Lasantha K ; Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
Wells, Jessie ; School of Biological Sciences, The University of Queensland, St Lucia, Australia
Westoby, Mark ; Department of Biological Sciences, Macquarie University, Sydney, Australia
White, Matthew; Department of Environment, Land, Water and Planning, Victoria, Australia
Williams, Nicholas S G; University of Melbourne, Melbourne, Australia
Wills, Jarrah; School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
Wilson, Peter G; National Herbarium of NSW and Royal Botanic Gardens and Domain Trust, Sydney, Australia
Yates, Colin; Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
Zanne, Amy E; Department of Biological Sciences, George Washington University, Washington, DC, 20052, USA ; Department of Biology, University of Miami, Coral Gables, Florida 33146 USA, George Washington University, Washington, DC, 20052, USA
Zemunik, Graham ; University of Western Australia, Crawley, Australia
Ziemińska, Kasia ; AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
We acknowledge the work of all Australian taxonomists and their supporting institutions, whose long-term work on describing the flora has provided a rich source of data for AusTraits, including: Australian National Botanic Gardens; Australian National Herbarium; Biodiversity Science, Parks Australia; Centre for Australian National Biodiversity Research; Department of Biodiversity, Conservation and Attractions, Western Australia; Department of Environment, Land, Water and Planning, Victoria; Flora of Australia; Kew; National Herbarium of NSW; National Herbarium of Victoria; Northern Territory Herbarium; NSW Department of Planning, Industry, and Environment; Queensland Herbarium; State Herbarium of South Australia; Tasmanian Herbarium; and the Western Australian Herbarium. We gratefully acknowledge input from the following persons who contributed to data collection Sophia Amini, Julian Ash, Tara Boreham, Ross Bradstock, Willi A. Brand, Amber Briggs, John Brock, Don Butler, Robert Chinnock, Peter Clarke, Derek Clayton, Steven Clemants, Harold Trevor Clifford, Michelle Cochrane, Bronwyn Collins, Alessandro Conti, Wendy Cooper, William Cooper, Ian Cowie, Lyn Craven, Ian Davidson, Derek Eamus, Judy Egan, Chris Fahey, Paul Irwin Forster, John Foster, Tony French, Allison Frith, Ronald Gardiner, Malcolm Gill, Ethel Goble-Garratt, Peter Grubb, Chris Guinane, TJ Hall, Monique Hallet, Tammy Haslehurst, Foteini Hassiotou, John Herbohn, Peter Hocking, Jing Hu, Kate Hughes, Muhammad Islam, Ian Kealley, Greg Keighery, James Kirkpatrick, Kirsten Knox, Luka Kovac, Kaely Kreger, John Kuo, Martin Lambert, Dana Lanceman, Michael Lawes, Claire Laws, Emma Laxton, Liz Lindsay, Daniel Montoya Londono, Christiane Ludwig, Ian Lunt, Mary Maconochie, Karen Marais, Bruce Maslin, Riah Mason, Richard Mazanec, Elissa McFarlane, Huw Morgan, Peter Myerscough, Des Nelson, Dominic Neyland, Mike Olsen, Corinna Orscheg, Jacob McC. Overton, Paula Peeters, George Perry, Aaron Phillips, Loren Pollitt, Rob Polmear, Hugh Possingham, Aina Price, Thomas Pyne, R.J.Williams, Barbara Rice, Jessica L. Rigg, Bryan Roberts, Miguel de Salas, Anna Salomaa, Inge Schulze, Waltraud Schulze, Andrew John Scott, Alison Shapcott, Veronica Shaw, Luke Shoo, Anne Sjostrom, Santiago Soliveres, Amanda Spooner, George Stewart, Jan Suda, Catherine Tait, Daniel Taylor, Ian Thompson, Hellmut R. Toelken, Malcolm Trudgen, W.E Westman, Erica Williams, Kathryn Willis, J. Bastow Wilson, Jian Yen. We thank H Cornelissen, H Poorter, SC McColl-Gausden, and one anonymous reviewer for feedback on an earlier draft, and K Levett for advice on data structures. This work was supported by fellowship grants from Australian Research Council to Falster (FT160100113), Gallagher (DE170100208) and Wright (FT100100910). The AusTraits project received investment (https://doi.org/10.47486/TD044, https:// doi.org/10.47486/DP720) from the Australian Research Data Commons (ARDC). The ARDC is funded by the National Collaborative Research Infrastructure Strategy (NCRIS).
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89 (2014). DOI: 10.1038/nature12872
Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345–356 (2014). DOI: 10.1111/1365-2745.12208
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167 (2016). DOI: 10.1038/nature16489
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204 (2016). DOI: 10.1038/nature16476
Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993). DOI: 10.1086/285524
Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014). DOI: 10.1073/pnas.1315179111
Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998). DOI: 10.2307/3237229
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007). DOI: 10.1111/j.0030-1299.2007.15559.x
Westoby, M. A leaf-height-seed (LHS) plant ecol. Strategy scheme. Plant Soil 199, 213–227 (1998). DOI: 10.1023/A:1004327224729
Funk, J. L. et al. Revisiting the holy grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017). DOI: 10.1111/brv.12275
Kattge, J. et al. TRY a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011). DOI: 10.1111/j.1365-2486.2011.02451.x
Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020). DOI: 10.1111/gcb.14904
CHAH. Australian Plant Census, Centre of Australian National Biodiversity Research. https://id.biodiversity.org.au/tree/51354547 (2020).
Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018). DOI: 10.1038/s41559-018-0667-3
Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294–303 (2020). DOI: 10.1038/s41559-020-1109-6
Chapman, A. D. et al. Numbers of living species in Australia and the world. (Australian Government, 2009).
Hopper, S. D. & Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650 (2004). DOI: 10.1146/annurev.ecolsys.35.112202.130201
Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2, 279–296 (2007). DOI: 10.1016/j.ecoinf.2007.05.004
Garnier, E. et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 105, 298–309 (2017). DOI: 10.1111/1365-2745.12698
Adams, M. A. M, P. & Attiwill. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. forests. I. Temporal changes in biomass and nutrient content. Aust. J. Bot. 32, 205–215 (1984).
Ahrens, C. W. et al. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evo. 10, 232–248 (2019). DOI: 10.1002/ece3.5890
Australian National Botanic Gardens. The National Seed Bank. http://www.anbg.gov.au/gardens/living/seedbank/ (2018).
Angevin, T. Species richness and functional trait diversity response to land use in a temperate eucalypt woodland community. (La Trobe University, 2011).
Apgaua, D. M. G. et al. Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS One 10, e0130799 (2015). DOI: 10.1371/journal.pone.0130799
Apgaua, D. M. G. et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 31, 582–591 (2017). DOI: 10.1111/1365-2435.12787
Ashton, D. H. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23, 413–433 (1975). DOI: 10.1071/BT9750413
Ashton, D. H. Phosphorus in forest ecosystems at Beenak, Victoria. The J. Ecol. 64, 171–186 (1976).
Attiwill, P. M. Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest IV: Nutrient uptake and nutrient return. Aust. J. Bot. 28, 199–222 (1980). DOI: 10.1071/BT9800199
Barlow, B. A., Clifford, H. T., George, A. S. & McCusker, A. K. A. Flora of Australia. http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/ (1981).
Bean, A. R. A revision of Baeckea (Myrtaceae) in eastern Australia, Malesia and south-east Asia. Telopea 7, 245–268 (1997). DOI: 10.7751/telopea19971018
Bell, L.C. Nutrient requirements for the establishment of native flora at Weipa. (Comalco Aluminium Ltd., 1985).
Bennett, L. T. & Attiwill, P. M. The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria. Aust. J. Bot. 45, 15–30 (1997). DOI: 10.1071/BT96025
Bevege, D. I. Biomass and nutrient distribution in indigenous forest ecosystems. vol. 6 20 (Queensland Department of Forestry, 1978).
Birk, E. M. & Turner, J. Response of flooded gum (E. grandis) to intensive cultural treatments: biomass and nutrient content of eucalypt plantations and native forests. For. Ecol. Manage. 47, 1–28 (1992). DOI: 10.1016/0378-1127(92)90262-8
Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010). DOI: 10.1111/j.1469-8137.2010.03439.x
Blackman, C. J. et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435–440 (2014). DOI: 10.1093/aob/mcu131
Blackman, C. J. et al. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 122, 59–67 (2018). DOI: 10.1093/aob/mcy051
Bloomfield, K. J. et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 32, 1492–1506 (2018). DOI: 10.1111/1365-2435.13097
Bolza, E. Properties and uses of 175 timber species from Papua New Guinea and West Irian. (Victoria (Australia) CSIRO, Div. of Building Research, 1975).
Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633–639 (2002). DOI: 10.1046/j.1365-2435.2002.00661.x
Brisbane Rainforest Action and Information Network. Trait measurements for Australian rainforest species. http://www.brisrain.org.au/ (2016).
Briggs, A. L. & Morgan, J. W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 212, 91–103 (2010). DOI: 10.1007/s11258-010-9806-x
Brock, J. & Dunlop, A. Native plants of northern Australia. (Reed New Holland, 1993).
Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009). DOI: 10.1104/pp.108.129783
Buckton, G. et al. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 44, 983–994 (2019). DOI: 10.1111/aec.12764
Burgess, S. S. O. & Dawson, T. E. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626–636 (2007). DOI: 10.1111/j.1469-8137.2007.02017.x
Burrows, G. E. Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia. Int. J. Plant Sci. 162, 411–430 (2001). DOI: 10.1086/319579
Butler, D. W., Gleason, S. M., Davidson, I., Onoda, Y. & Westoby, M. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol. 193, 137–149 (2011). DOI: 10.1111/j.1469-8137.2011.03887.x
Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann. Bot. 117, 349–361 (2015).
Canham, C. A., Froend, R. H. & Stock, W. D. Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound. Western Australia. Plant Cell Envrion. 32, 64–72 (2009). DOI: 10.1111/j.1365-3040.2008.01904.x
Carpenter, R. J. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116, 249–303 (1994). DOI: 10.1111/j.1095-8339.1994.tb00434.x
Carpenter, R. J., Hill, R. S. & Jordan, G. J. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int. J. Plant Sci. 166, 843–855 (2005). DOI: 10.1086/431806
Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 48, 432–442 (2011). DOI: 10.1111/j.1365-2664.2010.01945.x
Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J. & Downes, B. J. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20, 1084–1096 (2014). DOI: 10.1111/ddi.12225
Cernusak, L. A., Hutley, L. B., Beringer, J. & Tapper, N. J. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Envrion. 29, 632–646 (2006). DOI: 10.1111/j.1365-3040.2005.01442.x
Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011). DOI: 10.1016/j.agrformet.2011.01.006
Chandler, G. T., Crisp, M. D., Cayzer, L. W. & Bayer, R. J. Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust. Syst. Bot. 15, 619–739 (2002). DOI: 10.1071/SB01010
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009). DOI: 10.1111/j.1461-0248.2009.01285.x
Cheal, D. Growth stages and tolerable fire intervals for Victoria’s native vegetation data sets. (Victorian Government Department of Sustainability; Environment Melbourne, 2010).
Cheesman, A. W., Duff, H., Hill, K., Cernusak, L. A. & McInerney, F. A. Isotopic and morphologic proxies for reconstructing light environment and leaf function of fossil leaves: A modern calibration in the Daintree Rainforest, Australia. Am. J. Bot. 107, 1165–1176 (2020). DOI: 10.1002/ajb2.1523
Chen et al. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531–538 (2017). DOI: 10.1111/ecog.02010
Chinnock, R. J. Eremophila and allied genera: A monograph of the plant family Myoporaceae. (Rosenberg, 2007).
Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311 (2005). DOI: 10.1007/s00468-004-0392-1
Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F. & Holtum, J. A. M. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006). DOI: 10.1093/treephys/26.5.657
Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012). DOI: 10.1038/nature11688
Chudnoff, M. Tropical timbers of the world. 472 (US Department of Agriculture, Forest Service, 1984).
The French agricultural research and international cooperation organization (CIRAD). Wood density data. http://www.cirad.fr/ (2009).
Clarke, P. J. et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 534, 31–42 (2015). DOI: 10.1016/j.scitotenv.2015.04.002
Cooper, W. & Cooper, W. T. Fruits of the Australian tropical rainforest. (Nokomis Editions, 2004).
Cooper, W. & Cooper, W. T. Australian rainforest fruits. 272 (CSIRO Publishing, 2013).
Cornwell, W. K. Causes and consequences of functional trait diversity: plant community assembly and leaf decomposition. (Stanford University, California, 2006).
Centre for Plant Biodiversity Research. EUCLID 2.0: Eucalypts of Australia. http://apps.lucidcentral.org/euclid/text/intro/index.html (2002).
Craven, L. A., A taxonomic revision of Calytrix Labill. (Myrtaceae). Brunonia 10, 1–138 (1987). DOI: 10.1071/BRU9870001
Craven, L. A., Lepschi, B. J. & Cowley, K. J. Melaleuca (Myrtaceae) of Western Australia: Five new species, three new combinations, one new name and a new state record. Nuytsia 20, 27–36 (2010).
Crisp, M. D., Cayzer, L., Chandler, G. T. & Cook, L. G. A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa 300, 1–308 (2017). DOI: 10.11646/phytotaxa.300.1.1
Cromer, R. N., Raupach, M., Clarke, A. R. P. & Cameron, J. N. Eucalypt plantations in Australia - the potential for intensive production and utilization. Appita J. 29, 165–173 (1975).
Cross, E. The characteristics of natives and invaders: A trait-based investigation into the theory of limiting similarity. (La Trobe University, 2009).
Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Chang. Biol. 19, 3790–3807 (2013). DOI: 10.1111/gcb.12314
Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant. Sci. 10, art664 (2019). DOI: 10.3389/fpls.2019.00664
Cunningham, S. A., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69, 569–588 (1999). DOI: 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2
Curran, T. J., Clarke, P. J. & Warwick, N. W. M. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust. J. Bot. 57, 629–639 (2009). DOI: 10.1071/BT09128
Curtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust. J. Bot. 60, 471–483 (2012). DOI: 10.1071/BT11284
Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Envrion. 30, 1557–1565 (2007). DOI: 10.1111/j.1365-3040.2007.01733.x
Desch, H. E. & Dinwoodie, J. M. Timber structure, properties, conversion and use. (Palgrave Macmillan, 1996).
de Tombeur, F. et al. A shift from phenol to silica-based leaf defenses during long-term soil and ecosystem development. Ecol. Lett. 24, 984–995 (2021). DOI: 10.1111/ele.13713
Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017). DOI: 10.5194/bg-14-481-2017
Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020). DOI: 10.1111/nph.16558
Du, P., Arndt, S. K. & Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 28, 1752–1761 (2018). DOI: 10.1002/eap.1782
Du, P., Arndt, S. K. & Farrell, C. Can the turgor loss point be used to assess drought response to select plants for green roofs in hot and dry climates? Plant Soil 441, 399–408 (2019). DOI: 10.1007/s11104-019-04133-7
Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015). DOI: 10.1093/treephys/tpv047
Duncan, R. P. et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob. Ecol. Biog. 20, 509–519 (2011). DOI: 10.1111/j.1466-8238.2010.00633.x
Dwyer, J. M. & Laughlin, D. C. Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882 (2017). DOI: 10.1111/ele.12781
Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97–105 (2018). DOI: 10.1111/rec.12536
Eamus, D. & Prichard, H. A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18, 537–545 (1998). DOI: 10.1093/treephys/18.8-9.537
Eamus, D., Myers, B., Duff, G. & Williams, D. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiol. 19, 665–671 (1999). DOI: 10.1093/treephys/19.10.665
Myers, B., E., D. & Duff, G. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing life-span. Photosynthetica 36, 575–586 (1999). DOI: 10.1023/A:1007048222329
Edwards, C., Read, J. & Sanson, G. D. Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123, 158–167 (2000). DOI: 10.1007/s004420051001
Edwards, C., Sanson, G. D., Aranwela, N. & Read, J. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst. 134, 261–277 (2000). DOI: 10.1080/11263500012331350445
Schöenenberger, J. et al. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Am. J. Bot. 107, 1433–1448 (2020). DOI: 10.1002/ajb2.1538
Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, art126771 (2020). DOI: 10.1016/j.ufug.2020.126771
Everingham, S. E., Offord, C. A., Sabot, M. E. B. & Moles, A. T. Time travelling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 102, e03272 (2020).
Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509–525 (2003). DOI: 10.1046/j.1469-8137.2003.00765.x
Falster, D. S. & Westoby, M. Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J. Ecol. 93, 521–535 (2005). DOI: 10.1111/j.0022-0477.2005.00992.x
Falster, D. S. & Westoby, M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57–66 (2005). DOI: 10.1111/j.0030-1299.2005.13383.x
Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P. & Williams, N. S. G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49, 270–276 (2012). DOI: 10.1016/j.ecoleng.2012.08.036
Farrell, C., Szota, C., Williams, N. S. G. & Arndt, S. K. High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372, 177–193 (2013). DOI: 10.1007/s11104-013-1725-x
Farrell, C., Szota, C. & Arndt, S. K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Envrion. 40, 1500–1511 (2017). DOI: 10.1111/pce.12948
Feller, M. C. Biomass and nutrient distribution in two eucalypt forest ecosystems. Austral Ecol. 5, 309–333 (1980). DOI: 10.1111/j.1442-9993.1980.tb01255.x
Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecol. Evo. 3, 400–406 (2019). DOI: 10.1038/s41559-018-0790-1
Flynn, J. H. & Holder, C. D. A guide to useful woods of the world. (Forest Products Society, 2001).
Fonseca, C. R., Overton, J. M. C., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000). DOI: 10.1046/j.1365-2745.2000.00506.x
McDonald, P. G., Fonseca, C. R., Overton, J. M. C. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003). DOI: 10.1046/j.1365-2435.2003.00698.x
Forster, P. I. A taxonomic revision of Alyxia (Apocynaceae) in Australia. Aust. Syst. Bot. 5, 547–580 (1992). DOI: 10.1071/SB9920547
Forster, P. I. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papusia). Aust. Syst. Bot. 8, 691–701 (1995). DOI: 10.1071/SB9950691
French, B. J., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Aust. J. Bot. 64, 513–525 (2016). DOI: 10.1071/BT16087
Froend, R. H. & Drake, P. L. Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aust. J. Bot. 54, 173–179 (2006). DOI: 10.1071/BT05081
Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016). DOI: 10.1890/15-0974.1
Gallagher, R. V. et al. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 17, 884–897 (2011). DOI: 10.1111/j.1472-4642.2011.00805.x
Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012). DOI: 10.1111/j.1365-2699.2012.02773.x
Gardiner, R., Shoo, L. P. & Dwyer John. M. Look to seedling heights, rather than functional traits, to explain survival during extreme heat stress in the early stages of subtropical rainforest restoration. J. Appl. Ecol. 56, 2687–2697 (2019). DOI: 10.1111/1365-2664.13505
Geange, S. R. et al. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Clim. Change Responses 4, 1–12 (2017). DOI: 10.1186/s40665-017-0029-4
Geange, S. R., Holloway-Phillips, M.-M., Briceno, V. F. & Nicotra, A. B. Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Aust. J. Bot. 67, 599–609 (2020). DOI: 10.1071/BT19034
Ghannoum, O. et al. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob. Chang. Biol. 16, 303–319 (2010). DOI: 10.1111/j.1365-2486.2009.02003.x
Gleason, S. M., Butler, D. W., Zieminska, K., Waryszak, P. & Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343–352 (2012). DOI: 10.1111/j.1365-2435.2012.01962.x
Gleason, S. M., Butler, D. W. & Waryszak, P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174, 1292–1301 (2013). DOI: 10.1086/673239
Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A. & Westoby, M. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiol. 34, 275–284 (2014). DOI: 10.1093/treephys/tpu001
Gleason, S. M. et al. Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytol. 218, 1360–1370 (2018). DOI: 10.1111/nph.15116
Goble-Garratt, E., Bell, D. & Loneragan, W. Floristic and leaf structure patterns along a shallow elevational gradient. Aust. J. Bot. 29, 329–347 (1981). DOI: 10.1071/BT9810329
Gosper, C. R. Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust. J. Bot. 52, 223–230 (2004). DOI: 10.1071/BT03046
Gosper, C. R., Yates, C. J. & Prober, S. M. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J. Veg. Sci. 23, 1071–1081 (2012). DOI: 10.1111/j.1654-1103.2012.01434.x
Gosper, C. R., Prober, S. M. & Yates, C. J. Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. Ecol. Appl. 23, 924–935 (2013). DOI: 10.1890/12-0621.1
Gosper, C. R., Yates, C. J. & Prober, S. M. Floristic diversity in fire-sensitive eucalypt woodlands shows a “U”-shaped relationship with time since fire. J. Appl. Ecol. 50, 1187–1196 (2013). DOI: 10.1111/1365-2664.12120
Gosper, C. R. et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 43, 681–695 (2018). DOI: 10.1111/aec.12613
Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase - The online world grass flora. http://www.kew.org/data/grasses-db.html (2006).
Gray, E. F. et al. Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 11, 1–11 (2019). DOI: 10.1093/aobpla/plz024
Groom, P. K. & Lamont, B. B. Reproductive ecology of non-sprouting and re-sprouting Hakea species (Proteaceae) in southwestern Australia. In Gondwanan heritage (eds. S.D. Hopper M. Harvey, J. C. & George, A. S.) (Surrey Beatty, Chipping Norton, 1996).
Groom, P. K. & Lamont, B. B. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22, 352–355 (1997). DOI: 10.1111/j.1442-9993.1997.tb00682.x
Groom, P. K. & Lamont, B. B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 334, 61–72 (2010). DOI: 10.1007/s11104-009-0135-6
Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486–1497 (2015). DOI: 10.1111/1365-2435.12449
Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Shaw, V. Bark traits, decomposition and flammability of Australian forest trees. Aust. J. Bot. 65, 327 (2017). DOI: 10.1071/BT16258
Grootemaat, S., Wright, I. J., van Bodegom, P. M. & Cornelissen, J. H. C. Scaling up flammability from individual leaves to fuel beds. Oikos 126, 1428–1438 (2017). DOI: 10.1111/oik.03886
Gross, C. L. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau. Indonesia. Aust. J. Bot. 41, 591–599 (1993). DOI: 10.1071/BT9930591
Gross, C. L. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes–more monoecy but why? Am. J. Bot. 92, 907–919 (2005). DOI: 10.3732/ajb.92.6.907
Grubb, P. J. & Metcalfe, D. J. Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Funct. Ecol. 10, 512–520 (1996). DOI: 10.2307/2389944
Grubb, P. J. et al. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: Correlations with toughness and leaf presentation. Ann. Bot. 101, 1379–1389 (2008). DOI: 10.1093/aob/mcn047
Guilherme Pereira, C., Clode, P. L., Oliveira, R. S. & Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 218, 959–973 (2018). DOI: 10.1111/nph.15043
Guilherme Pereira, C. et al. Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot. J. Ecol. 107, 2006–2023 (2019). DOI: 10.1111/1365-2745.13158
Hacke, U. G. et al. Water transport in vesselless Angiosperms: Conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113–1126 (2007). DOI: 10.1086/520724
Hall, T. J. The nitrogen and phosphorus concentrations of some pasture species in the Dichanthium-Eulalia Grasslands of North-West Queensland. Rangeland J. 3, 67–73 (1981). DOI: 10.1071/RJ9810067
Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B. & Evans, J. R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Envrion. 32, 259–270 (2009). DOI: 10.1111/j.1365-3040.2008.01918.x
Hassiotou, F., Evans, J. R., Ludwig, M. & Veneklaas, E. J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Envrion. 32, 1596–1611 (2009). DOI: 10.1111/j.1365-3040.2009.02024.x
Hatch, A. B. Influence of plant litter on the Jarrah forest soils of the Dwellingup region. West. Aust. For. Timber Bur. Leaflet 18 (1955).
Hayes, P., Turner, B. L., Lambers, H. & Laliberte, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396–410 (2013). DOI: 10.1111/1365-2745.12196
Hayes, P. E., Clode, P. L., Oliveira, R. S. & Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency. Plant Cell Envrion. 41, 605–619 (2018). DOI: 10.1111/pce.13124
Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001). DOI: 10.1034/j.1600-0706.2001.920309.x
Hocking, P. J. The nutrition of fruits of two proteaceous shrubs, Grevillea wilsonii and Hakea undulata, from south-western Australia. Aust. J. Bot. 30, 219–230 (1982). DOI: 10.1071/BT9820219
Hocking, P. J. Mineral nutrient composition of leaves and fruits of selected species of Grevillea from southwestern Australia, with special reference to Grevillea leucopteris Meissn. Aust. J. Bot. 34, 155–164 (1986). DOI: 10.1071/BT9860155
Hong, L. T. et al. Plant resources of south east Asia: Timber trees. World biodiversity Database CD rom series (Springer-Verlag Berlin; Heidelberg GmbH; Co. KG, 1999).
Hopmans, P., Stewart, H. T. L. & Flinn, D. W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manage. 59, 29–51 (1993). DOI: 10.1016/0378-1127(93)90069-Y
Huang, G., Rymer, P. D., Duan, H., Smith, R. A. & Tissue, D. T. Elevated temperature is more effective than elevated CO2 in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob. Chang. Biol. 21, 3800–3813 (2015). DOI: 10.1111/gcb.12990
Hyland, B. P. M., Whiffin, T., Christophel, D., Gray, B. & Elick, R. W. Australian tropical rain forest plants trees, shrubs and vines. (CSIRO Publishing, 2003).
World Agroforestry Centre (ICRAF). The wood density database. http://www.worldagroforestry.org/output/wood-density-database (2009).
Ilic, J., Boland, D., McDonald, M., G., D. & Blakemore, P. Woody density phase 1 - State of knowledge. National Carbon Accounting System. Technical Report 18. (Australian Greenhouse Office, Canberra, Australia, 2000).
Islam, M., Turner, D. W. & Adams, M. A. Phosphorus availability and the growth, mineral composition and nutritive value of ephemeral forbs and associated perennials from the Pilbara, Western Australia. Aust. J. Exp. Agric. 39, 149–159 (1999). DOI: 10.1071/EA98133
Islam, M. & Adams, M. A. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Trop. Grassl. 33, 193–200 (1999).
Jordan, G. J. An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Aust. J. Bot. 49, 333–340 (2001). DOI: 10.1071/BT00024
Jordan, G. J., Weston, P. H., Carpenter, R. J., Dillon, R. A. & Brodribb, T. J. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 95, 521–530 (2008). DOI: 10.3732/ajb.2007333
Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A. & Brodribb, T. J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 205, 608–617 (2015). DOI: 10.1111/nph.13076
Jordan, G. J. et al. Links between environment and stomatal size through evolutionary time in Proteaceae. Proc. R. Soc. Lond. B Biol. Sci. 287, 20192876 (2020).
Jurado, E. Diaspore weight, dispersal, growth form and perenniality of central Australian plants. J. Ecol. 79, 811–828 (1991). DOI: 10.2307/2260669
Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Austral Ecol. 17, 341–348 (1992). DOI: 10.1111/j.1442-9993.1992.tb00816.x
Kanowski, J. Ecological determinants of the distribution and abundance of the folivorous marsupials endemic to the rainforests of the Atherton uplands, north Queensland. (James Cook University, Townsville, 1999).
Keighery, G. Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15, 261–268 (2004).
Royal Botanic Gardens Kew. Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).
Royal Botanic Gardens Kew. Seed protein data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).
Royal Botanic Gardens Kew. Oil content data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).
Royal Botanic Gardens Kew. Seed dispersal data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).
Royal Botanic Gardens Kew. Germination data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).
Knox, K. J. E. & Clarke, P. J. Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecol. 212, 1967–1978 (2011). DOI: 10.1007/s11258-011-9956-5
Körner, C. & Cochrane, P. M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66, 443–455 (1985). DOI: 10.1007/BF00378313
Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biog. 20, 707–716 (2011). DOI: 10.1111/j.1466-8238.2010.00641.x
Kotowska, M. M., Wright, I. J. & Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant. Sci. 11, art86 (2020). DOI: 10.3389/fpls.2020.00086
Kuo, J., Hocking, P. & Pate, J. Nutrient reserves in seeds of selected Proteaceous species from South-western Australia. Aust. J. Bot. 30, 231–249 (1982). DOI: 10.1071/BT9820231
Laliberté, E. et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol. 100, 631–642 (2012). DOI: 10.1111/j.1365-2745.2012.01962.x
Lambert, M. J. Sulphur relationships of native and exotic tree species. (Macquarie University, Sydney, 1979).
Lamont, B. B., Groom, P. K. & Cowling, R. M. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct. Ecol. 16, 403–412 (2002). DOI: 10.1046/j.1365-2435.2002.00631.x
Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytol. 207, 942–947 (2015). DOI: 10.1111/nph.13465
Landsberg, J. Dieback of rural eucalypts: response of foliar dietary quality and herbivory to defoliation. Austral Ecol. 15, 89–96 (1990). DOI: 10.1111/j.1442-9993.1990.tb01023.x
Landsberg, J. & Gillieson, D. S. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust. J. Ecol. 20, 299–315 (1995). DOI: 10.1111/j.1442-9993.1995.tb00542.x
Lawes, M. J., Adie, H., Russell-Smith, J., Murphy, B. & Midgley, J. J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2, 1–13 (2011). DOI: 10.1890/ES10-00204.1
Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011). DOI: 10.1007/s11258-011-9954-7
Lawes, M. J., Midgley, J. J. & Clarke, P. J. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. J. Ecol. 101, 517–524 (2012). DOI: 10.1111/1365-2745.12035
Lawson, J. R., Fryirs, K. A. & Leishman, M. R. Data from: Hydrological conditions explain wood density in riparian plants of south-eastern Australia. Dryad Digital Repository 10.5061/dryad.72h45 (2015).
Laxton, E. Relationship between leaf traits, insect communities and resource availability. (Macquarie University, 2005).
Lee, M. R. et al. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 100, e02790 (2019). DOI: 10.1002/ecy.2790
Leigh, A. & Nicotra, A. B. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aust. J. Bot. 51, 509–514 (2003). DOI: 10.1071/BT03043
Leigh, A., Cosgrove, M. J. & Nicotra, A. B. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J. Ecol. 94, 1261–1271 (2006). DOI: 10.1111/j.1365-2745.2006.01164.x
Leishman, M. R. & Westoby, M. Classifying plants into groups on the basis of associations of individual traits–Evidence from Australian semi-arid woodlands. J. Ecol. 80, 417–424 (1992). DOI: 10.2307/2260687
Leishman, M. R., Westoby, M. & Jurado, E. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83, 517–529 (1995). DOI: 10.2307/2261604
Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176, 635–643 (2007). DOI: 10.1111/j.1469-8137.2007.02189.x
Lemmens, R. H. M. J. & Soerjanegara, I. Prosea, Volume 5/1: Timber Trees - Major Commercial Timbers. (Pudoc/Prosea, 1993).
Lenz, T. I., Wright, I. J. & Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 127, 423–433 (2006). DOI: 10.1111/j.1399-3054.2006.00680.x
Leuning, R., Cromer, R. N. & Rance, S. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88, 504–510 (1991). DOI: 10.1007/BF00317712
Lewis, J. D. et al. Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct. Plant. Bio. 42, 836–850 (2015). DOI: 10.1071/FP14256
Lim, F. K. S., Pollock, L. J. & Vesk, P. A. The role of plant functional traits in shrub distribution around alpine frost hollows. J. Veg. Sci. 28, 585–594 (2017). DOI: 10.1111/jvs.12517
Lord, J. et al. Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. J. Biogeogr. 24, 205–211 (1997). DOI: 10.1046/j.1365-2699.1997.00126.x
Lusk, C. H., Onoda, Y., Kooyman, R. & Gutiurrez-Giron, A. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol. 186, 429–438 (2010). DOI: 10.1111/j.1469-8137.2010.03202.x
Lusk, C. H., Kelly, J. W. G. & Gleason, S. M. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann. Bot. 111, 479–488 (2012). DOI: 10.1093/aob/mcs289
Lusk, C. H., Sendall, K. M. & Clarke, P. J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 62, 48–55 (2014). DOI: 10.1071/BT13262
Macinnis-Ng, C., McClenahan, K. & Eamus, D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Funct. Plant. Bio. 31, 429–439 (2004). DOI: 10.1071/FP03194
Macinnis-Ng, C. M. O., Zeppel, M. J. B., Palmer, A. R. & Eamus, D. Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils. J. Arid Environ. 129, 102–110 (2016). DOI: 10.1016/j.jaridenv.2016.02.011
Marsh, N. R. & Adams, M. A. Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust. J. Bot. 43, 39–49 (1995). DOI: 10.1071/BT9950039
Maslin, B. WATTLE, Interactive Identification of Australian Acacia. Version 2. (Australian Biological Resources Study, Canberra, 2014).
McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. R. Soc. Lond. B Biol. Sci. 286, 20192221 (2019).
McClenahan, K., Macinnis-Ng, C. & Eamus, D. Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust. J. Bot. 52, 509–518 (2004). DOI: 10.1071/BT03123
McGlone, M. S., Richardson, S. J. & Jordan, G. J. Comparative biogeography of New Zealand trees: Species richness, height, leaf traits and range sizes. New Zealand J. Ecol. 34, 137–151 (2010).
McGlone, M. S., Richardson, S. J., Jordan, G. J. & Perry, G. L. W. Is there a “suboptimal” woody species height? A response to Scheffer et al. Trends in Ecol. Evo. 30, 4–5 (2015). DOI: 10.1016/j.tree.2014.09.007
McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their relationship to disturbance response in herbaceous vegetation. The J. Ecol. 83, 31–44 (1995). DOI: 10.2307/2261148
Meers, T. Role of plant functional traits in determining the response of vegetation to land use change on the Delatite Peninsula, Victoria. (University of Melbourne, 2007).
Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19, 515–524 (2008). DOI: 10.3170/2008-8-18401
Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust. J. Bot. 58, 257–270 (2010). DOI: 10.1071/BT10013
Meers, T. L., Kasel, S., Bell, T. L. & Enright, N. J. Conversion of native forest to exotic Pinus radiata plantation: response of understorey plant composition using a plant functional trait approach. For. Ecol. Manage. 259, 399–409 (2010). DOI: 10.1016/j.foreco.2009.10.035
Meier, E. The wood database. http://www.wood-database.com/ (2007).
Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010). DOI: 10.1111/j.1461-0248.2009.01403.x
Milberg, P. & Lamont, B. B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol. 137, 665–672 (1997). DOI: 10.1046/j.1469-8137.1997.00870.x
Milberg, P., Pérez-Fernández, M. A. & Lamont, B. B. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 86, 624–632 (1998). DOI: 10.1046/j.1365-2745.1998.00283.x
Mokany, K. & Ash, J. Are traits measured on pot grown plants representative of those in natural communities? J. Veg. Sci. 19, 119–126 (2008). DOI: 10.3170/2007-8-18340
Mokany, K., Thomson, J. J., Lynch, A. J. J., Jordan, G. J. & Ferrier, S. Linking changes in community composition and function under climate change. Ecol. Appl. 25, 2132–2141 (2015). DOI: 10.1890/14-2384.1
Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000). DOI: 10.1034/j.1600-0706.2000.900310.x
Moles, A. T., Warton, D. I. & Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 28, 575–585 (2003). DOI: 10.1046/j.1442-9993.2003.01314.x
Moles, A. T. et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788 (2011). DOI: 10.1111/j.1469-8137.2011.03732.x
Mooney, H. A., Ferrar, P. J. & Slatyer, R. O. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36, 103–111 (1978). DOI: 10.1007/BF00344575
Moore, A. W., Russell, J. S. & Coaldrake, J. E. Dry matter and nutrient content of a subtropical semiarid forest of Acacia harpophylla F. Muell. (Brigalow). Aust. J. Bot. 15, 11–24 (1967). DOI: 10.1071/BT9670011
Moore, N. A., Camac, J. S. & Morgan, J. W. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 221, 1424–1433 (2018). DOI: 10.1111/nph.15480
Morgan, H. Root system architecture, water use and rainfall responses of perennial species. (Macquarie University, 2005).
Muir, A. M., Vesk, P. A. & Hepworth, G. Reproductive trajectories over decadal time-spans after fire for eight obligate-seeder shrub species in south-eastern Australia. Aust. J. Bot. 62, 369–379 (2014). DOI: 10.1071/BT14117
Munroe, S. E. M. et al. The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network. Scientific Data 8, 97 (2021). DOI: 10.1038/s41597-021-00877-z
National Herbarium of NSW. Trait measurements for NSW rainforest species from PLantNET. http://plantnet.rbgsyd.nsw.gov.au/ (2016).
Nicholson, A., Prior, L. D., Perry, G. L. W. & Bowman, D. M. J. S. High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. Int. J. Wildland Fire 26, 532–537 (2017). DOI: 10.1071/WF16211
Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus - Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 54, 391–407 (2006). DOI: 10.1071/BT05061
Nicolle, D. Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. (Currency Creek Arboretum Eucalypt Research, 2018).
Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009). DOI: 10.1093/jxb/erp045
Kenny, B., Orscheg, C., Tasker, E., Gill, M. A. & Bradstock, R. NSW Flora Fire Response Database, v2.1. (NSW Department of Planning Industry; Environment, 2014).
Northern Territory Herbarium. Flora of the Darwin Region Online. http://www.lrm.nt.gov.au/plants-and-animals/herbarium/darwin_flora_online (2014).
Onoda, Y., Richards, A. E. & Westoby, M. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493–501 (2009). DOI: 10.1111/j.1469-8137.2009.03088.x
O’Reilly-Nugent, A. et al. Measuring competitive impact: Joint‐species modelling of invaded plant communities. J. Ecol. 108, 449–459 (2018). DOI: 10.1111/1365-2745.13280
Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014). DOI: 10.1111/nph.12942
Paczkowska G. & Chapman, A.R. The Western Australian flora: A descriptive catalogue. 652 (CALM, Kings Park; Botanic Gardens; Wildflower Society of Western Australia, 2000).
Palma, E. et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40, 875–886 (2017). DOI: 10.1111/ecog.02516
Pate, J. S., Rasins, E., Rullo, J. & Kuo, J. Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747–770 (1986). DOI: 10.1093/oxfordjournals.aob.a087159
Pearcy, R. W. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct. Ecol. 1, 169–178 (1987). DOI: 10.2307/2389419
Peeters, P. J. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77, 43–65 (2002). DOI: 10.1046/j.1095-8312.2002.00091.x
Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C. & Grierson, P. F. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J. Veg. Sci. 22, 1009–1020 (2011). DOI: 10.1111/j.1654-1103.2011.01323.x
Pickering, C., Green, K., Barros, A. A. & Venn, S. A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp. Bot. 124, 93–103 (2014). DOI: 10.1007/s00035-014-0140-0
Pickup, M., Westoby, M. & Basden, A. Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol. 19, 88–97 (2005). DOI: 10.1111/j.0269-8463.2005.00927.x
Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2011). DOI: 10.1111/j.1600-0587.2011.07085.x
Pollock, L. J. et al. Combining functional traits, the environment and multiple surveys to understand semi-arid tree distributions. J. Veg. Sci. 29, 967–977 (2018). DOI: 10.1111/jvs.12686
Prior, L. D., Eamus, D. & Bowman, D. M. J. S. Leaf attributes in the seasonally dry tropics: A comparison of four habitats in northern Australia. Funct. Ecol. 17, 504–515 (2003). DOI: 10.1046/j.1365-2435.2003.00761.x
Prior, L. D., Bowman, D. M. J. S. & Eamus, D. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18, 707–718 (2004). DOI: 10.1111/j.0269-8463.2004.00885.x
Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmainian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016). DOI: 10.1071/BT15259
Oxford Forestry Institute. Prospect: The wood database. http://dps.plants.ox.ac.uk/ofi/prospect/index.htm (2009).
Royal Botanic Gardens Kew. Seed Information Database (SID). http://data.kew.org/sid/ (2014).
Royal Botanic Gardens Sydney. PLantNET. http://plantnet.rbgsyd.nsw.gov.au/search/simple.htm (2014).
Royal Botanic Gardens Sydney. PLantNET: NSW flora online. http://plantnet.rbgsyd.nsw.gov.au/ (2014).
Read, J. & Sanson, G. D. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81–99 (2003). DOI: 10.1046/j.1469-8137.2003.00855.x
Read, J., Sanson, G. D. & Lamont, B. B. Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276, 95–113 (2005). DOI: 10.1007/s11104-005-3343-8
Reid, J. B., Hill, R., Brown, M. & and M. Hovenden. Vegetation of Tasmania. 456 (1999).
Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J. & Mayfield, M. M. Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol. 38, 664–677 (2017). DOI: 10.1093/treephys/tpx143
Rice, K. J., Matzner, S. L., Byer, W. & Brown, J. R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190–198 (2004). DOI: 10.1007/s00442-004-1503-9
Richards, A. E. et al. Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol. Conserv. 111, 41–52 (2003). DOI: 10.1016/S0006-3207(02)00245-8
Roderick, M. L., Berry, S. L. & Noble, I. R. The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143, 63–72 (1999). DOI: 10.1046/j.1469-8137.1999.00438.x
Roderick, M. L. & Cochrane, M. J. On the conservative nature of the leaf mass-area relationship. Ann. Bot. 89, 537–542 (2002). DOI: 10.1093/aob/mcf100
Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497 (2014). DOI: 10.1111/nph.12541
Rye, B. L. A revision of south-western Australian species of Micromyrtus (Myrtaceae) with five antisepalous ribs on the hypanthium. Nuytsia 15, 101–122 (2002).
Rye, B. L. A partial revision of the south-western Australian species of Micromyrtus (Myrtaceae: Chamelaucieae). Nuytsia 16, 117–147 (2006).
Rye, B. L. Reinstatement of the Western Australian genus Oxymyrrhine (Myrtaceae: Chamelaucieae) with three new species. Nuytsia 19, 149–165 (2009).
Rye, B. L. A revision of the Micromyrtus racemosa complex (Myrtaceae: Chamelaucieae) of south-western Australia. Nuytsia 20, 37–56 (2010).
Rye, B. L., Wilson, P. G. & Keighery, G. J. A revision of the species of Hypocalymma (Myrtaceae: Chamelaucieae) with smooth or colliculate seeds. Nuytsia 23, 283–312 (2013).
Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 1. Calytrix. Nuytsia 23, 483–501 (2013).
Rye, B. L. A revision of the south-western Australian genus Babingtonia (Myrtaceae: Chamelaucieae). Nuytsia 25, 219–250 (2015).
Jessop, J. P. & Toelken, H. R. Flora of South Australia, 4th edition, 4 vols. (Government Printer, Adelaide, 1986).
Sams, M. A. et al. Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Glob. Ecol. Biog. 26, 1165–1176 (2017). DOI: 10.1111/geb.12627
Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 1–10 (2017). DOI: 10.1038/ncomms16047
Schmidt, S. & Stewart, G. R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Envrion. 20, 1231–1241 (1997). DOI: 10.1046/j.1365-3040.1997.d01-20.x
Schmidt, S. & Stewart, G. R. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003). DOI: 10.1007/s00442-002-1150-y
Schmidt, S., Lamble, R. E., Fensham, R. J. & Siddique, I. Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331, 79–90 (2009). DOI: 10.1007/s11104-009-0233-5
Schulze, E., Kelliher, F. M., Körner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629–662 (1994). DOI: 10.1146/annurev.es.25.110194.003213
Schulze, E.-D. et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant. Physiol. 25, 413–425 (1998).
Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiol. Plant. 127, 434–444 (2006). DOI: 10.1111/j.1399-3054.2006.00682.x
Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26, 479–492 (2006). DOI: 10.1093/treephys/26.4.479
Turner, N. C., Schulze, E.-D., Nicolle, D., Schumacher, J. & Kuhlmann, I. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiol. Plant. 132, 440–445 (2008). DOI: 10.1111/j.1399-3054.2007.01027.x
Schulze, E. D. et al. Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125–1135 (2014). DOI: 10.1007/s00468-014-1023-0
Scott, A. J. Vegetation recovery and recruitment processes in south-eastern Australian semi-arid old fields. (La Trobe University, 2010).
Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct. Ecol. 30, 845–855 (2015). DOI: 10.1111/1365-2435.12573
Seng, O. D. Specific gravity of Indonesian Woods and its significance for practical use. (FPRDC Forestry Department, Bogor, Indonesia, 1951).
Sjöström, A. & Gross, C. L. Life-history characters and phylogeny are correlated with extinction risk in the Australian angiosperms. J. Biogeogr. 33, 271–290 (2006). DOI: 10.1111/j.1365-2699.2005.01393.x
Smith, B. Community-level Convergence and Community Structure of temperate Nothofagus forests. (University of Otago, Dunedin, New Zealand, 1996).
Smith, R. A., Lewis, J. D., Ghannoum, O. & Tissue, D. T. Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct. Plant. Bio. 39, 285–296 (2012). DOI: 10.1071/FP11238
Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Systs. 14, 402–410 (2012). DOI: 10.1016/j.ppees.2012.09.003
Soper, F. M. et al. Natural abundance (delta15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297–308 (2014). DOI: 10.1007/s00442-014-3176-3
Specht, R. L. et al. Mediterranean-type ecosystems: A data source book. 248 (Springer, 1988).
Specht, R. L. & Rundel, P. W. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38, 459–474 (1990). DOI: 10.1071/BT9900459
Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in Angiosperms. Int. J. Plant Sci. 168, 1127–1139 (2007). DOI: 10.1086/520726
Staples, T., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biog. 28, 1417–1429 (2019). DOI: 10.1111/geb.12962
Stewart, G., Turnbull, M., Schmidt, S. & Erskine, P. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Funct. Plant. Bio. 22, 51–55 (1995). DOI: 10.1071/PP9950051
Stock, W. D., Pate, J. S. & Rasins, E. Seed developmental patterns in Banksia attenuata R. Br. and B. laricina C. Gardner in relation to mechanical defence costs. New Phytol. 117, 109–114 (1991). DOI: 10.1111/j.1469-8137.1991.tb00950.x
Tait, C. J., Daniels, C. B. & Hill, R. S. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol. Appl. 15, 346–359 (2005). DOI: 10.1890/04-0920
Taseski, G., Keith, D. A., Dalrymple, R. L. & Cornwell, W. K. Shifts in fine root traits within and among species along a small-scale hydrological gradient. (University of New South Wales, 2017).
Taylor, D. & Eamus, D. Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain. Tree Physiol. 28, 1169–1177 (2008). DOI: 10.1093/treephys/28.8.1169
Thomas, F. M. & Vesk, P. A. Growth races in The Mallee: Height growth in woody plants examined with a trait-based model. Austral Ecol. 42, 790–800 (2017). DOI: 10.1111/aec.12501
Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS One 12, e0176959 (2017). DOI: 10.1371/journal.pone.0176959
Thompson, I. R. Morphometric analysis and revision of eastern Australian Hovea (Brongniartieae-Fabaceae). Aust. Syst. Bot. 14, 1–99 (2001). DOI: 10.1071/SB00008
Tasmanian Herbarium. Flora of Tasmania Online. http://www.tmag.tas.gov.au/floratasmania (2009).
Tng, D. Y. P., Jordan, G. J. & Bowman, D. M. J. S. Plant traits demonstrate that temperate and tropical giant Eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8, e84378 (2013). DOI: 10.1371/journal.pone.0084378
Toelken, H. R. A revision of the genus Kunzea (Myrtaceae) I. The western Australian section Zeanuk. J. Adel. Bot. Gard. 17, 29–106 (1996).
Tomlinson, K. W. et al. Biomass partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100, 1113–1121 (2012). DOI: 10.1111/j.1365-2745.2012.01975.x
Tomlinson, K. W. et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430–440 (2013). DOI: 10.1111/1365-2745.12056
Tomlinson, K. W. et al. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J. Ecol. 107, 1051–1066 (2019). DOI: 10.1111/1365-2745.13085
Tremont, R. M. Life-history attributes of plants in grazed and ungrazed grasslands on the Northern Tablelands of New South Wales. Aust. J. Bot. 42, 511–530 (1994). DOI: 10.1071/BT9940511
Trudgen, M. E. & Rye, B. L. Astus, a new western Australian genus of Myrtaceae with heterocarpidic fruits. Nuytsia 14, 495–512 (2005).
Trudgen, M. E. & Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 2. Cyathostemon. Nuytsia 24, 7–16 (2014).
Turner, J. & Lambert, M. J. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. For. Ecol. Manage. 6, 155–168 (1983). DOI: 10.1016/0378-1127(83)90019-1
Turner, N. C., Schulze, E.-D., Nicolle, D. & Kuhlmann, I. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiol. 30, 741–747 (2010). DOI: 10.1093/treephys/tpq029
Veneklaas, E. J. & Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257, 295–304 (2003). DOI: 10.1023/A:1027383920150
Venn, S. E., Green, K., Pickering, C. M. & Morgan, J. W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 212, 1491–1499 (2011). DOI: 10.1007/s11258-011-9923-1
Venn, S., Pickering, C. & Green, K. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6, plu008 (2014). DOI: 10.1093/aobpla/plu008
Vesk, P. A., Leishman, M. R. & Westoby, M. Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J. Appl. Ecol. 41, 22–31 (2004). DOI: 10.1111/j.1365-2664.2004.00857.x
Vesk, P. A. & Yen, J. D. L. Plant resprouting: How many sprouts and how deep? Flexible modelling of multispecies experimental disturbances. Perspect. Plant Ecol. Evol. Systs. 41, 125497 (2019). DOI: 10.1016/j.ppees.2019.125497
Vlasveld, C., O’Leary, B., Udovicic, F. & Burd, M. Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Aust. J. Bot. 66, 191–201 (2018). DOI: 10.1071/BT17134
Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au (1998).
Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au/ (2016).
Warren, C. R., Tausz, M. & Adams, M. A. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiol. 25, 1369–1378 (2005). DOI: 10.1093/treephys/25.11.1369
Warren, C. R., Dreyer, E., Tausz, M. & Adams, M. A. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Funct. Ecol. 20, 929–940 (2006). DOI: 10.1111/j.1365-2435.2006.01198.x
Weerasinghe, L. K. et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 34, 564–584 (2014). DOI: 10.1093/treephys/tpu016
Wells, J. A. Phylogeny and inter-relations of ecological traits and seed dispersal in rainforest plants: Exploring aspects of functional diversity in primary and secondary rainforests in Australia’s Wet Tropics. (University of Queensland, 2012).
Westman, W. E. & Roggers, R. V. Nutrient stocks in a subtropical eucalypt forest, North Stradbroke Island. Austral Ecol. 2, 447–460 (1977). DOI: 10.1111/j.1442-9993.1977.tb01160.x
Westoby, M. et al. Seed size and plant growth form as factors in dispersal spectra. Ecology 71, 1307–1315 (1990). DOI: 10.2307/1938268
Westoby, M. & Wright, I. J. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003). DOI: 10.1007/s00442-003-1231-6
Wheeler, J. R., Marchant, N. G. & Lewington, M. Flora of the south west: Bunbury, Augusta, Denmark. (Australian Biological Resources Study; University of Western Australia Press, 2002).
White, M., Sinclair, S. & Frood, D. Victorian Vital Attributes Database. (Department of Environment, Land, Water; Planning, Victoria, 2020).
Williams, N. S. G., Morgan, J. W., McDonnell, M. J. & McCarthy, M. A. Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. 93, 1203–1213 (2005). DOI: 10.1111/j.1365-2745.2005.01039.x
Wills, J. et al. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees. Ecol. Appl. 28, 1116–1125 (2018). DOI: 10.1002/eap.1715
Wilson, P. G. & Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 12, 293–307 (2008). DOI: 10.7751/telopea20085819
Wright, I. J. et al. A survey of seed and seedling characters in 1744 Australian dicotyledon species: Cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biol. J. Linn. Soc. 69, 521–547 (2000). DOI: 10.1111/j.1095-8312.2000.tb01222.x
Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001). DOI: 10.1046/j.0269-8463.2001.00542.x
Wright, I. J. & Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155, 403–416 (2002). DOI: 10.1046/j.1469-8137.2002.00479.x
Wright, I. J., Westoby, M. & Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534–543 (2002). DOI: 10.1046/j.1365-2745.2002.00689.x
Wright, I. J., Falster, D. S., Pickup, M. & Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127, 445–456 (2006). DOI: 10.1111/j.1399-3054.2006.00699.x
Wright, I. J. et al. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecol. 44, 339–350 (2018). DOI: 10.1111/aec.12678
Yates, C. J. et al. Mallee woodlands and shrublands: the mallee, muruk/muert and maalok vegetation of Southern Australia. in Australian Vegetation (Cambridge University Press, 2017).
Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad 10.5061/dryad.234 (2009).
Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, plt046 (2013). DOI: 10.1093/aobpla/plt046
Zieminska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range - A study of twig wood across 69 Australian Angiosperms. PLoS One 10, e0124892 (2015). DOI: 10.1371/journal.pone.0124892
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019). DOI: 10.21105/joss.01686
Stephens, J. Yaml: Methods to convert r data to YAML and back (r package version 2.1. 13). (2014).
FitzJohn, R. Remake: Make-like build management. R package version 0.2.0. (2016).
Xie, Y. Dynamic documents with R and Knitr. (2015).
Allaire, J. et al. Rmarkdown: Dynamic documents for R. R package version 0.5.1. (2015).
CHAH. Australian Plant Name Index (continuously updated), Centre of Australian National Biodiversity Research. (https://www.biodiversity.org.au/nsl/services/apni (14/05/2020), 2020).
Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000Res. 2, 191 (2013). DOI: 10.12688/f1000research.2-191.v1
Falster, D. et al. AusTraits: a curated plant trait database for the Australian flora. Zenodo 10.5281/zenodo.3568417 (2021).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).
Falster, D. S., FitzJohn, R. G., Pennell, M. W. & Cornwell, W. K. Datastorr: A workflow and package for delivering successive versions of ‘evolving data’ directly into R. GigaScience 8, giz035 (2019). DOI: 10.1093/gigascience/giz035
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). DOI: 10.1002/ajb2.1019
Jin, Y. V.PhyloMaker: Make phylogenetic hypotheses for vascular plants, etc. R package version 0.1.0. (2020).
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Gtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecol. Evo. 8, 28–36 (2017). DOI: 10.1111/2041-210X.12628
Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. (2020).
Whittaker, R. H. Communities and ecosystems. (MacMillan Publishers, 1975).
Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI: 10.1002/joc.5086