[en] Potato sprouting during storage occurs after a break in dormancy, leading to a decrease in quality and consequently economic losses. We used 3379 records from multi-year and multi-environment trials of 537 potato varieties to identify the main factors driving potato dormancy and to develop predictive models for an efficient sprouting forecast. The variety explained the majority of the dormancy variability (60.3%), followed by the year (13.9%) and the location (5.4%). About 250 predictors were considered to develop a predictive model of potato dormancy. The selected model had a validation precision of 14.59 days; it used the variety class and the sum of the daily maximum temperatures in the air during the period from planting to harvest as predictors. The predictions of the selected model were supported by results of the in vivo trial using dormancy measurements from potato varieties grown under different temperature regimes in greenhouse conditions. With the growing impact of climate change on crop production, predictive models as developed here can provide an efficient and cost-effective tool to optimize the control of potato sprouting during storage.
Disciplines :
Agriculture & agronomy
Author, co-author :
Visse-Mansiaux, Margot ; Université de Liège - ULiège > Gembloux Agro-Bio Tech > Doct. sc. agro. & ingé. biol. (Paysage) ; Agroscope, Swiss Confederation's center for agricultural research, Plants and Plant Products Competence Division, Varieties and Production Techniques research group, Nyon, Switzerland
Soyeurt, Hélène ; Université de Liège - ULiège > Département GxABT
Herrera, Juan Manuel; Agroscope, Swiss Confederation's center for agricultural research, Plants and Plant Products Competence Division, Varieties and Production Techniques research group, Nyon, Switzerland
Torche, Jean-Marie; Agroscope, Swiss Confederation's center for agricultural research, Plants and Plant Products Competence Division, Varieties and Production Techniques research group, Nyon, Switzerland
Vanderschuren, Hervé ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Tropical Crop Improvement Laboratory, Biosystems Department, KU Leuven, Heverlee, Belgium
Dupuis, Brice; Agroscope, Swiss Confederation's center for agricultural research, Plants and Plant Products Competence Division, Varieties and Production Techniques research group, Nyon, Switzerland
Language :
English
Title :
Prediction of potato sprouting during storage
Alternative titles :
[fr] Prédiction de la dormance des pommes de terre pendant le stockage
Original title :
[en] Prediction of potato sprouting during storage
This work was supported through Innosuisse – the Swiss Innovation Agency (grant number 17865.2 PFLS-LS ), Fenaco, Zweifel and Swisspatat in Switzerland, as well as the Ministry of Walloon Region (EUREKA grant from the SPW6 ), and UPL Benelux in Belgium .
Agrico, 2020. Potato varieties. Retrieved from 〈https://extranet.agrico.nl/en/products-and-services/potato-varieties/〉 (Accessed 9 April 2020).
Agriculture and Horticulture Development Board (AHDB), 2019. Can we use the dormancy of potato varieties for long term storage in the post CIPC-era? Retrieved from 〈https://ahdb.org.uk/news/can-we-use-the-dormancy-of-potato-varieties-for-long-term-storage-in-the-post-cipc-era〉 (Accessed 24 October 2020).
Aksenova, N.P., Sergeeva, L., Konstantinova, T.N., Golyanovskaya, S.A., Kolachevskaya, O.O., Romanov, G.A., Regulation of potato tuber dormancy and sprouting. Russ. J. Plant Physiol. 60:3 (2013), 301–312, 10.1134/S1021443713030023.
Alexandre, E.M.C., Rodrigues, I.M., Saraiva, J.A., Influence of Thermal and pressure treatments on inhibition of potato tuber sprouting. Czech J. Food Sci. 33:6 (2015), 524–530, 10.17221/241/2015-CJFS.
Bates, D., Maechler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using (lme4). J. Stat. Softw. 67:1 (2015), 1–48, 10.18637/jss.v067.i01.
Blauer, J.M., Knowles, L.O., Knowles, N.R., Evidence that tuber respiration is the pacemaker of physiological aging in seed potatoes (Solanum tuberosum L.). J. Plant Growth Regul. 32:4 (2013), 708–720, 10.1007/s00344-013-9338-4.
Burton, W.G., The effect of the concentrations of carbon dioxide and oxygen in the storage atmosphere upon the sprouting of potatoes at 10C. Eur. Potato J. 1:2 (1958), 47–57.
Burton, W.G., The physics and physiology of storage. Harris, P.M., (eds.) The Potato Crop: The Scientific Basis for Improvement, 1978, Springer US, Boston, MA, 545–606, 10.1007/978-1-4899-7210-1_15.
Caldiz, D.O., Physiological age research during the second half of the twentieth century. Potato Res. 52:4 (2009), 295–304, 10.1007/s11540-009-9143-4.
Caldiz, D.O., Fernandez, L.V., Struik, P.C., Physiological age index: a new, simple and reliable index to assess the physiological age of seed potato tubers based on haulm killing date and length of the incubation period. Field Crops Res. 69:1 (2001), 69–79, 10.1016/s0378-4290(00)00134-9.
Celis-Gamboa, C., Struik, P.C., Jacobens, E., Visser, R.G.F., Sprouting of seed tubers during cold storage and its influence on tuber formation, flowering and the duration of the life cycle in a diploid population of potato. Potato Res. 46 (2003), 9–25, 10.1007/BF02736099.
Coleman, W.K., Dormancy release in potato tubers: a review. Am. Potato J. 64:2 (1987), 57–68, 10.1007/BF02853438.
Corsini, D., Stallknecht, G., Sparks, W., Changes in chlorpropham residues in stored potatoes. Am. Potato J. 56:1 (1979), 43–50, 10.1007/BF02851122.
Czerko, Z., Grudzińska, M., Influence of weather and storage conditions on sprouting of potato tubers. Bull. Plant Breed. Acclim. Instituite 271 (2014), 119–127.
Danieli, R., Blank, L., Salam, B.B., Malka, S.K., Teper-Bamnolker, P., Daus, A., Zig, U., Amichay, M., Shemer, Z., Gal-On, A., Postharvest temperature has a greater impact on apical dominance of potato seed-tuber than field growing-degree days exposure. Field Crops Res. 223 (2018), 105–112, 10.1016/j.fcr.2018.03.020.
Daniels-Lake, B.J., Prange, R.K., The canon of potato science: 41. Sprouting. Potato Res. 50:3–4 (2007), 379–382, 10.1007/s11540-008-9065-6.
Delaplace, P., Caractérisation Physiologique et Biochimique du Processus de Vieillissement du Tubercule de Pomme de Terre (Solanum tuberosum L.). (Dissertation Originale Présentée en Vue de l'obtention du Grade de Docteur en Sciences Agronomiques et Ingénierie Biologique). 2007, Faculté universitaire des sciences agronomiques de Gembloux 〈https://orbi.ulg.ac.be/bitstream/2268/158541/1/20071219_DelaplaceP_PhD.pdf〉.
Delaplace, P., Brostaux, Y., Fauconnier, M.L., du Jardin, P., Potato (Solanum tuberosum L.) tuber physiological age index is a valid reference frame in postharvest ageing studies. Postharvest Biol. Technol. 50:1 (2008), 103–106, 10.1016/j.postharvbio.2008.03.002.
Delaplace, P., Fauconnier, M.L., Sergeant, K., Dierick, J.F., Oufir, M., Van der Wal, F., America, A.H., Renaut, J., Hausman, J.F., Du Jardin, P., Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J. Exp. Bot. 60:4 (2009), 1273–1288, 10.1093/jxb/erp008.
Emilsson, B., Studies on the Rest Period and Dormant Period in the Potato Tuber (3 Doctoral Thesis, Monograph). 1949, Kungl. Lantbruksakademien, Stockholm.
European Commission, 2019. Commission implementing regulation (EU) 2019/989 of 17 June 2019 concerning the non-renewal of approval of the active substance chlorpropham, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. Retrieved from 〈https://eur-lex.europa.eu/legal-content/〉 (Accessed 18 June 2019).
European Cultivated Potato Database. European Cultivated Potato Database. Retrieved from 〈https://www.europotato.org/〉 (Accessed 9 April 2020).
European Food Safety Authority (EFSA), Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., Chiusolo, A., Court Marques, D., Crivellente, F., De Lentdecker, C., De Maglie, M., Egsmose, M., Erdos, Z., Fait, G., Ferreira, L., Goumenou, M., Greco, L., Ippolito, A., Istace, F., Jarrah, S., Kardassi, D., Leuschner, R., Lythgo, C., Magrans, J.O., Medina, P., Miron, I., Molnar, T., Nougadere, A., Padovani, L., Parra Morte, J.M., Pedersen, R., Reich, H., Sacchi, A., Santos, M., Serafimova, R., Sharp, R., Stanek, A., Streissl, F., Sturma, J., Szentes, C., Tarazona, J., Terron, A., Theobald, A., Vagenende, B., Verani, A., Villamar-Bouza, L., Peer review of the pesticide risk assessment of the active substance chlorpropham. EFSA J., 15(7), 2017, e04903, 10.2903/j.efsa.2017.4903 (25).
Fernie, A.R., Willmitzer, L., Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127:4 (2001), 1459–1465, 10.1104/pp.010764.
Firman, D.M., O'Brien, P.J., Allen, E.J., Predicting the emergence of potato sprouts. J. Agric. Sci. 118:1 (1992), 55–61, 10.1017/S0021859600068003.
Fox, J., Weisberg, S., An R Companion to Applied Regression, 3rd ed., 2019, Sage, Thousand Oaks (CA).
Fukuda, T., Takamatsu, K., Bamba, T., Fukusaki, E., Gas chromatography-mass spectrometry metabolomics-based prediction of potato tuber sprouting during long-term storage. J. Biosci. Bioeng. 128:2 (2019), 249–254, 10.1016/j.jbiosc.2019.01.016.
Hatfield, J.L., Prueger, J.H., Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10 (2015), 4–10, 10.1016/j.wace.2015.08.001.
Hope, R.M., 2013. Rmisc: Rmisc: Ryan Miscellaneous (Version R package version 1.5). Retrieved from 〈https://CRAN.R-project.org/package=Rmisc〉.
IPCC, Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., (eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge, UK, 976.
Kuhn, M., 2020. caret: Classification and Regression Training (Version R package version 6.0–85). Retrieved from 〈https://CRAN.R-project.org/package=caret〉.
Lang, G., Early, J., Martin, G.C., Darnell, R.M., Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22 (1987), 371–377.
Le plant de pomme de terre Français. Fiches descriptives des variétés de pomme de terre. Retrieved from 〈http://plantdepommedeterre.org/index/fiches-descriptives-des-varietes-de-pomme-de-terre/〉 (Accessed 9 April 2020).
Lenth, R., 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means (Version R package version 1.4.4). Retrieved from 〈https://CRAN.R-project.org/package=emmeans〉.
Levy, D., Veilleux, R., Adaptation of potato to high temperatures and salinity - a review. Am. J. Potato Res. 84 (2007), 487–506, 10.1007/BF02987885.
Magdalena, G., Dariusz, M., Losses during storage of potato varieties in relation to weather conditions during the vegetation period and temperatures during long-term storage. Am. J. Potato Res. 95:2 (2018), 130–138, 10.1007/s12230-017-9617-x.
Mahajan, B.V. c, Dhatt, A., Sandhu, K., Garg, A., Effect of CIPC (isopropyl–N (3-chlorophenyl) carbamate) on storage and processing quality of potato. J. Food Agric. Environ. 6:1 (2008), 34–38.
Muthoni, J., Kabira, J., Shimelis, H., R, M, Regulation of potato tuber dormancy: a review. Aust. J. Crop Sci. 8:5 (2014), 754–759.
NIVAP, 2011. Potato variety catalogue 2011. Retrieved from 〈http://www.aardappelpagina.nl/uk/about_potatoes/variety_catalogue〉 (Accessed 9 April 2020).
Orejuela, E., Silva Poma, M., Rapid determination of aniline metabolites of chlorpropham in potatoes by micellar electrokinetic chromatography using negative-charged mixed micelles and laser-induced fluorescence detection. Electrophoresis 26 (2005), 2991–2998, 10.1002/elps.200410330.
Paul, V., Ezekiel, R., Pandey, R., Acrylamide in processed potato products: progress made and present status. Acta Physiol. Plant., 38(12), 2016, 276, 10.1007/s11738-016-2290-8.
Paul, V., Ezekiel, R., Pandey, R., Sprout suppression on potato: need to look beyond CIPC for more effective and safer alternatives. J. Food Sci. Technol. 53:1 (2016), 1–18, 10.1007/s13197-015-1980-3.
Paul, V., Pandey, R., Ezekiel, R., Kumar, D., Potential of glyphosate as a sprout suppressant for potato (Solanum tuberosum L.) tubers during storage. Indian J. Plant Physiol. 19:4 (2014), 293–305.
R Core Team, 2019. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing. Retrieved from 〈https://www.R-project.org/〉.
Reust, W., Contribution à L'apréciation de L'âge Physiologique des Tubercules de Pommes de Terre (Solanum tuberosum L.) et étude de Son Importance sur le Rendement. 1982, Ecole polytechnique fédérale de Zurich 〈http://e-collection.library.ethz.ch/eserv/eth:35983/eth-35983-02.pdf〉.
Reust, W., Physiological age of potato. Definitions of terms (European Association for Potato Research Working Group). Potato Res. 29:2 (1986), 268–271.
Reust, W., Winiger, F.A., Hebeisen, T., Dutoit, J.P., Assessment of the physiological vigour of new potato cultivars in Switzerland. Potato Res. 44:1 (2001), 11–17, 10.1007/BF02360282.
Sarkar, D., Lattice: Multivariate Data Visualization with R. 2008, Springer-Verlag New York, New York, 10.1007/978-0-387-75969-2.
Smith, M.J., Bucher, G., Tools to study the degradation and loss of the N-phenyl carbamate chlorpropham - a comprehensive review. Environ. Int. 49 (2012), 38–50, 10.1016/j.envint.2012.08.005.
Solana GmbH & Co. KG. Potato varieties. Retrieved from 〈https://www.solana.de/list-of-varieties.html〉 (Accessed 9 April 2020).
Sowokinos, J.R., Biochemical and molecular control of cold-induced sweetening in potatoes. Am. J. Potato Res. 78:3 (2001), 221–236, 10.1007/BF02883548.
Struik, P.C., The canon of potato science: 40. Physiological age of seed tubers. Potato Res., 50, 2007, 375, 10.1007/s11540-008-9069-2.
Struik, P.C., Van der Putten, P.E.L., Caldiz, D.O., Scholte, K., Response of stored potato seed tubers from contrasting cultivars to accumulated day-degrees. Crop Sci. 46:3 (2006), 1156–1168, 10.2135/cropsci2005.08-0267.
Teper-Bamnolker, P., Dubai, N., Fischer, R., Belausov, E., Zemach, H., Shoseyov, O., Eshel, D., Mint essential oil can induce or inhibit potato sprouting by differential alteration of apical meristem. Planta 232:1 (2010), 179–186, 10.1007/s00425-010-1154-5.
Visse-Mansiaux, M., Ballmer, T., Tallant, M., Shumbe, L., Vanderschuren, H., Dupuis, B., Sprouting control of the potato varieties using cold storage. Harper, G., Hofman, T., (eds.) EAPR Post Harvest section meeting 2019, the Maids Head Hotel, Norwich, UK, 2019, AHDB Potatoes, Sutton Bridge, UK & Certis Europe BV, Maarssen, Netherlands (12–14 March 2019) 〈https://emmabates6.wixsite.com/mysite/abstracts〉.
Wiberley-Bradford, A.E., Bethke, P.C., Rate of cooling alters chip color, sugar contents, and gene expression profiles in stored potato tubers. Am. J. Potato Res. 94:5 (2017), 534–543, 10.1007/s12230-017-9591-3.
Wickham, H., The split-apply-combine strategy for data analysis. J. Stat. Softw. 40:1 (2011), 1–29, 10.18637/jss.v040.i01.
Wickham, H., Ggplot2: Elegant Graphics for Data Analysis, 2016, Springer, Cham, 10.1007/978-3-319-24277-4.
Wilke, C.O., 2019. cowplot: streamlined Plot Theme and Plot Annotations for 'ggplot2' (Version R package version 1.0.0). Retrieved from 〈https://CRAN.R-project.org/package=cowplot〉.