[en] We compare the intensity of the OI 130.4 and 135.6 nm emissions calculated using the soft electron precipitation measured on board the Pioneer Venus (PV) Orbiter with the auroral brightness observed with the ultraviolet spectrometer (OUVS) on board the PV. For this purpose, we use a new electron transport model based on a Monte Carlo implementation of the Boltzmann equation and a multi-stream radiative transfer model to calculate the effects of multiple scattering on the intensity field of the 130.4-nm triplet. We show that the consideration of the enhancement of the emergent 130.4-nm to the 135.6-nm intensity by multiple scattering in the optically thick Venus atmosphere increases the auroral 130.4/135.6 ratio by a factor of about 3. We find agreement with the mean 130.4/135.6 ratio observed with PV-OUVS using the typical suprathermal electron energy spectrum reported from PV in situ measurements showing a characteristic energy of about 14 eV. To account for the average OI auroral emissions, the required precipitated energy flux is 2×10[SUP]-3[/SUP] mW m[SUP]-2[/SUP], that is about 30% of the measured suprathermal night-side soft electron spectrum used as a reference. The calculated brightness of the CO Cameron bands is about twice as large as the weak observed emission, but within the error bars of the observations and the uncertainties of the dissociative excitation cross-section of CO[SUB]2[/SUB]. The electron transport model, coupled with calculations of excitation processes is also applied to an analysis of the FUV oxygen day airglow observations made with PV-OUVS and the Hopkins Ultraviolet Telescope (HUT) spectrograph. Comparisons indicate that the model accounts for both the disc-averaged intensities observed with the HUT spectrograph, the limb scans and the 130.4-nm images obtained with PV-OUVS. The relative contribution of resonance scattering of the solar line and photoelectron impact to the excitation of the 130.4-nm triplet depends on the altitude, but is globally dominated by resonance scattering. The intensity of the 130.4-nm dayglow emission does not vary proportionally with the O density in the lower thermosphere, but provides nevertheless a useful tool to remotely probe the atomic oxygen density and its variations.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Shematovich, V. I.; Institute of Astronomy, Russian Academy of Sciences, Moscow, Russian Federation
Bisikalo, D. V.; Institute of Astronomy, Russian Academy of Sciences, Moscow, Russian Federation
Gladstone, G. R.; Southwest Research Institute, San Antonio, TX, USA
Language :
English
Title :
The Venus ultraviolet oxygen dayglow and aurora: Model comparison with observations
Publication date :
01 March 2008
Journal title :
Planetary and Space Science
ISSN :
0032-0633
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
Ajello J.M. Emission cross sections of CO2 by electron impact in the interval 1260-4500 Å. II. J. Chem. Phys. 55 (1971) 3169-3177
Alexander M.J., Stewart A.I.F., Solomon S.C., and Bougher S.W. Local time asymmetries in the Venus thermosphere. J. Geophys. Res. 98 (1993) 10849-10871
Bertaux J.L., Blamont J.E., Lepine V.M., Kurt V.G., Romanova N.N., and Smirnov A.S. Venera 11 and Venera 12 observations of E.U.V. emissions from the upper atmosphere of Venus. Planet. Space Sci. 29 (1981) 149-166
Bisikalo D.V., Shematovich V.I., and Gérard J.-C. Kinetic model of the formation of the hot oxygen geocorona. II. Influence of O+ ion precipitation. J. Geophys. Res. 100 (1995) 3715-3720
Broadfoot A.L., Kumar S., Belton M.J.S., and McElroy M.B. Ultraviolet observations of Venus from Mariner 10: preliminary result. Science 183 (1974) 1315-1318
Conway R.R. Spectroscopy of the Cameron bands in the Mars airglow. J. Geophys. Res. 87 (1981) 4767-4775
Durrance S.T., Barth C.A., and Stewart A.I.F. Pioneer Venus observations of the Venus dayglow spectrum 1250-1430 A. Geophys. Res. Lett. 7 (1980) 222-224
Erdman P.W., and Zipf E.C. Electron-impact excitation of the Cameron System (a 3Π→X1Σ) of CO. Planet. Space Sci. 31 (1983) 317-321
Feldman P.D., Burgh E.B., Durrance S.T., and Davidsen A.F. Far-ultraviolet spectroscopy of Venus and Mars at 4 Angstrom resolution with the Hopkins Ultraviolet Telescope on ASTRO-2. Ap. J. 538 (2000) 395-400
Fox J.L., and Bougher S.W. Structure, luminosity and dynamics of the Venus thermosphere. Space Sci. Rev. 55 (1991) 357-489
Fox J.L., and Dalgarno A. Ionization, luminosity and heating of the upper atmosphere of Venus. J. Geophys. Res. 86 (1981) 629-639
Fox J.L., and Stewart A.I.F. The Venus ultraviolet aurora: a soft electron source. J. Geophys. Res. 96 (1991) 9821-9828
Furlong J.M., and Newell W.R. Total cross section measurement for the metastable a 3Π state of CO. J. Phys. B 29 (1996) 331-338
Gérard J.-C., Hubert B., Bisikalo D.V., and Shematovich V.I. A model of the Lyman-α line profile in the proton aurora. J. Geophys. Res. 105 (2000) 15795-15806
Gladstone G.R. Radiative transfer of resonance lines with internal sources. J. Quant. Spectr. Radiat. Transfer 33 (1985) 453-458
Gladstone G.R. Solar OI 1304 A triplet line profiles. J. Geophys. Res. 97 (1992) 19125-19519
Green A.E.S., and Sawada T. Ionization cross sections and secondary electron distributions. J. Atmos. Terr. Phys. 34 (1972) 1719-1728
Gringauz K.I., Verigin M.I., Breus T.K., and Gombosi T. Interaction of electrons in the optical umbra of Venus with the planetary atmosphere: the origin of the nighttime ionosphere. J. Geophys. Res. 84 (1979) 2123-2128
Hedin A.E., Niemann H.B., Kasprzak W.T., and Seiff A. Global empirical model of the Venus thermosphere. J. Geophys. Res. 88 (1983) 73-83
Hord C.W., Barth C.A., Esposito L.W., Mcclintock W.E., Pryor W.R., Simmons K.E., Stewart A.I.F., Thomas G.E., Ajello J.M., Lane A.L., West R.E., Sandel B.R., Broadfoot A.L., Hunten D.M., and Shemansky D.E. Galileo ultraviolet spectrometer experiment: initial Venus and interplanetary cruise results. Science 253 (1991) 1548-1550
Huebner W.F., Keady J.J., and Lyon S.P. Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195 (1992) 1-289
Itikawa Y. Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data 31 (2002) 749-767
Jackman C.H., Garvey R.H., and Green A.E.S. Electron impact on atmospheric gases. I-Updated cross sections. J. Geophys. Res. 82 (1977) 5081-5090
Johnson P.V., McConkey J.W., Tayal S.S., and Kanik I. Collisions of electrons with atomic oxygen: current status. Can. J. Phys. 83 (2005) 589-616
Knudsen W.C., and Miller K.L. Pioneer Venus superthermal electron flux measurements in the Venus umbra. J. Geophys. Res. 90 (1985) 2695-2702
Meier R.R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci. Rev. 58 (1991) 1-185
Meier R.R., Anderson Jr. D.E., and Stewart A.I.F. Atomic oxygen emissions observed from Pioneer Venus. Geophys. Res. Lett. 10 (1983) 214-217
Paxton, L., Anderson, D.E.N., 1992. Venus and Mars: atmospheres, ionospheres, and solar wind interactions. In: Proceedings of the Chapman Conference, Balatonfured, Hungary, Washington, DC, American Geophysical Union, pp. 113-189.
Paxton L.J., and Meier R.R. Reanalysis of Pioneer orbiter ultraviolet spectrometer data: OI 1304 intensities and atomic oxygen densities. Geophys. Res. Lett. 13 (1986) 229-232
Philipps J.L., Stewart A.I.F., and Luhmann J.G. The Venus ultraviolet aurora: observations at 130.4 nm. Geophys. Res. Lett. 13 (1986) 1047-1050
Rottman G. Variations of solar ultraviolet irradiance observed by the UARS SOLSTICE-1991 to 1999. Space Sci. Rev. 94 (2000) 83-91
Sawada T., Strickland D.J., and Green A.E.S. Electron energy deposition in CO2. J. Geophys. Res. 77 (1972) 4812-4818
Shematovich V.I., Bisikalo D.V., and Gérard J.-C. A kinetic model of the formation of the hot oxygen geocorona. I. Quiet geomagnetic conditions. J. Geophys. Res. 99 (1994) 23,217-23,228
Shematovich, V.I., Bisikalo, D.V., Gérard, J.-C., Cox, C., Bougher, S.W., Leblanc, F., 2007. Monte Carlo model of the electron transport for the calculations of Mars dayglow emissions. J. Geophys. Res., in press.
Spenner K., Knudsen W.C., and Lotze W. Suprathermal electron fluxes in the Venus nightside ionosphere at moderate and high solar activity. J. Geophys. Res. 101 (1996) 4557-4564
Spenner K., Dobe Z., Nagy A.F., Knudsen W.C., and Lotze W. Photoelectron fluxes in the Venus dayside ionosphere. J. Geophys. Res. 102 (1997) 2577-2583
Stewart A.I. Design and operation of the Pioneer Venus orbiter ultraviolet spectrometer. IEEE Trans. Geosci. Remote Sensing GE18 (1980) 65-70
Stone J., and Zipf E.C. Electron impact excitation of the 3S° and 5S° states of atomic oxygen. J. Chem. Phys. 60 (1974) 4237-4243
Tobiska W.K. SOLAR2000 irradiances for climate change, aeronomy and space system engineering. Adv. Space. Res. 34 (2004) 1736-1746
Venus International Reference Atmosphere (VIRA), 1985. Kliore, A.J., Moroz, V.I., Keating, J.M. (Eds.), Adv. Space Res. 5(11), Pergamon Press.
Woods T., and Rottman G. Ultraviolet variability over time periods of aeronomic interest, atmospheres in the solar system: comparative aeronomy. In: Mendillo M., Nagy A., and Waite J.H. (Eds). Geophysical Monograph 130 (2002), American Geophysical Union, Washington, DC 221
Zipf E.C., and Erdman P.W. Electron impact excitation of atomic oxygen: revised cross sections. J. Geophys. Res. 90 (1985) 11087-11090