Article (Scientific journals)
Piecewise-uniform homogenization of heterogeneous composites using a spatial decomposition based on inelastic micromechanics
Spilker, Kevin; Nguyen, Van Dung; Adam, Laurent et al.
2022In Composite Structures, 295, p. 115836
Peer Reviewed verified by ORBi
 

Files


Full Text
2022_COST_TFA.pdf
Author postprint (45.44 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Transformation Field Analysis; Homogenization; Heterogeneous materials; Reduced order modeling; Elasto-plasticity
Abstract :
[en] The homogenized mechanical response of heterogeneous, elasto-plastic composite materials is investigated by the use of the transformation field analysis (TFA), a two-scale algorithm relying on microscopically piece-wise uniform fields of internal variables. Not optimized spatial subdomain decompositions of the microscopic domain cause over-stiff composite material responses modeled by the TFA since the main characteristics of the inelastic field interactions are not well-represented. To improve mechanical predictions using the TFA approach, emerging inelastic fields were used to achieve enhanced spatial decompositions. The numerical estimation of the interaction functions between the subdomains allows the use of this TFA approach for the numerical modeling of a wide variety of composite materials without the need of any pre-determined reference stiffnesses. The new TFA approach was tested for materials with isotropic and anisotropic microstructures and various material systems, with a particular emphasis on the complex case of perfectly plastic material phases. Comparisons are drawn between the TFA modeling using elasticity-based and inelasticity-based spatial divisions and to reference full-field computations. The achieved results prove that more accurate predictions for the mechanical responses of composite materials can be found when inelastic fields are considered as the foundation of the spatial division into subdomains.
Research center :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Aerospace & aeronautics engineering
Mechanical engineering
Author, co-author :
Spilker, Kevin  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Nguyen, Van Dung  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Adam, Laurent;  MSC Software Belgium SA
Wu, Ling ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Piecewise-uniform homogenization of heterogeneous composites using a spatial decomposition based on inelastic micromechanics
Publication date :
01 September 2022
Journal title :
Composite Structures
ISSN :
0263-8223
eISSN :
1879-1085
Publisher :
Elsevier, Netherlands
Volume :
295
Pages :
115836
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
VISCOS
Funders :
Walloon region [BE]
Funding number :
7911
Funding text :
The research has been funded by the Walloon Region under the agreement no.7911-VISCOS in the context of the 21st SKYWIN call.
Commentary :
NOTICE: this is the author’s version of a work that was accepted for publication in Composite Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composite Structures 295 (2022) 115836, DOI: 10.1016/j.compstruct.2022.115836
Available on ORBi :
since 01 June 2022

Statistics


Number of views
98 (31 by ULiège)
Number of downloads
12 (1 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
0

Bibliography


Similar publications



Contact ORBi