[en] Anticyclonic mesoscale eddies are often observed in the Balearic Sea (BS) toward the end of summer and autumn. In some years, these eddies become strong and persistent, modifying the local water mass properties. In this study, we analyze two of the most significant recent long-lived anticyclonic eddies, occurring in 2010 and 2017, using data from a high-resolution circulation model, altimetry and satellite-borne sea surface temperature observations. These eddies lasted around 2 and 4 months, respectively, with a radius varying between 40 and 75 km. The generation and intensification mechanisms of these long-lived anticyclonic eddies are studied by means of (a) energy conversion terms associated with eddy-mean flow interaction and (b) model sensitivity tests. Results show that these eddies were formed and intensified through mixed barotropic and baroclinic instabilities. The former are produced under the action of intense northwesterly (NW) winds. The latter are related to the existence of an intense summer thermal front between the BS and the Gulf of Lion, and to northward inflows of relatively lower salinity waters. Both the wind events and the presence of the thermal front are necessary for the formation of the eddies. The intensification process varied between both events. While in 2010 it was driven by significant salinity gradients produced by northwards inflows, in 2017 it was produced by additional intense NW winds. Both long-lived anticyclonic eddies created long-lasting surface temperature anomalies up to 2.5°C, which have characteristics of local marine heatwaves.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Aguiar, E., Juza, M., Mourre, B., Pascual, A., Mason, E., Alvera-Azcárate, A., & Tintore, J. (2019). Anticyclonic eddy anomaly: Impact on the boundary current and circulation in the Western Mediterranean Sea. In The Copernicus marine environment Monitoring Service ocean state report, Issue3. Journal of Operational Oceanography, 12(sup1), S1–S123. https://doi.org/10.1080/1755876X.2019.1633075
Aguiar, E., Mourre, B., Juza, M., Reyes, E., Hernández-Lasheras, J., Cutolo, E., et al. (2020). Multi-platform model assessment in the Western Mediterranean Sea: Impact of downscaling on the surface circulation and mesoscale activity. Ocean Dynamics. https://doi.org/10.1007/s10236-019-01317-8
Amitai, Y., Lehahn, Y., Lazar, A., & Heifetz, E. (2010). Surface circulation of the eastern Mediterranean Levantine basin: Insights from analyzing 14 years of satellite altimetry data. Journal of Geophysical Research, 115, C10058. https://doi.org/10.1029/2010JC006147
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., et al. (2019). On the resolutions of ocean altimetry maps. Ocean Science, 15(4), 1091–1109. https://doi.org/10.5194/os-15-1091-2019
Barceló-Llull, B., Pascual, A., Ruiz, S., Escudier, R., Torner, M., & Tintoré, J. (2019). Temporal and spatial hydrodynamic variability in the Mallorca channel (Western Mediterranean Sea) from 8 Years of underwater glider data. Journal of Geophysical Research: Oceans, 124(4), 2769–2786. https://doi.org/10.1029/2018JC014636
Beckmann, A., Böning, C. W., Brügge, B., & Stammer, D. (1994). On the generation and role of eddy variability in the central North Atlantic Ocean. Journal of Geophysical Research, 99(C10), 20381–20391. https://doi.org/10.1029/94JC01654
Bensoussan, N., Chiggiato, J., Buongiorno Nardelli, B., Pisano, A., & Garrabou, J. (2019). Insights on 2017 marine heat waves in the Mediterranean Sea. Copernicus Marine Service Ocean State Report #3. Journal of Operational Oceanography.
Brach, L., Deixonne, P., Bernard, M.-F., Durand, E., Desjean, M.-C., Perez, E., et al. (2018). Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre. Marine Pollution Bulletin, 126, 191–196. https://doi.org/10.1016/j.marpolbul.2017.10.077
Buongiorno Nardelli, B., Tronconi, C., Pisano, A., & Santoleri, R. (2013). High and ultra-high resolution processing of satellite sea surface temperature data over southern European seas in the framework of MyOcean project. Remote Sensing of Environment, 129, 1–16. https://doi.org/10.1016/j.rse.2012.10.012
Capet, A., Mason, E., Rossi, V., Troupin, C., Faugère, Y., Pujol, I., & Pascual, A. (2014). Implications of refined altimetry on estimates of mesoscale activity and eddy-driven offshore transport in the Eastern Boundary Upwelling Systems. Geophysical Research Letters, 41(21), 7602–7610. https://doi.org/10.1002/2014GL061770
Capó, E., Orfila, A., Mason, E., & Ruiz, S. (2018). Energy conversion routes in the Western Mediterranean Sea estimated from eddy–mean flow interactions. Journal of Physical Oceanography, 49(1), 247–267. https://doi.org/10.1175/JPO-D-18-0036.1
Cerrano, C., Bavestrello, G., Bianchi, C. N., Cattaneo-vietti, R., Bava, S., Morganti, C., et al. (2000). A catastrophic mass-mortality episode of Gorgonian and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecology Letters, 3(4), 284–293. https://doi.org/10.1046/j.1461-0248.2000.00152.x
Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Naggar, K., & Siwertz, N. (1998). Geographical variability of the first baroclinic Rossby radius of deformation. Journal of Physical Oceanography, 28(3), 433–460. https://doi.org/10.1175/1520-0485(1998)028<0433:gvotfb>2.0.co;2
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., & Samelson, R. M. (2011). The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054), 328. https://doi.org/10.1126/science.1208897
Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011). Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2), 167–216. https://doi.org/10.1016/j.pocean.2011.01.002
Chen, G., Wang, D., Han, W., Feng, M., Wang, F., Li, Y., & Gordon, A. L. (2020). The extreme El Niño events suppressing the intraseasonal variability in the eastern tropical Indian Ocean. Journal of Physical Oceanography, 50(8), 2359–2372. https://doi.org/10.1175/jpo-d-20-0041.1
Condie, S., & Condie, R. (2016). Retention of plankton within ocean eddies. Global Ecology and Biogeography, 25(10), 1264–1277. https://doi.org/10.1111/geb.12485
Dong, C., McWilliams, J. C., Liu, Y., & Chen, D. (2014). Global heat and salt transports by eddy movement. Nature Communications, 5(1), 3294. https://doi.org/10.1038/ncomms4294
d’Ovidio, F., Monte, S. D., Penna, A. D., Cotté, C., & Guinet, C. (2013). Ecological implications of eddy retention in the open ocean: A Lagrangian approach. Journal of Physics A: Mathematical and Theoretical, 46(25), 254023. https://doi.org/10.1088/1751-8113/46/25/254023
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., & Beuvier, J. (2016). Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation. Journal of Geophysical Research: Oceans, 121(6), 3990–4006. https://doi.org/10.1002/2015JC011371
Ferrari, R., & Wunsch, C. (2009). Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics, 41(1), 253–282. https://doi.org/10.1146/annurev.fluid.40.111406.102139
Font, J., Salat, J., & Tintoré, J. (1988). Permanent features of the circulation in the Catalan Sea. Oceanologica Acta, Special issue.
Fox-Kemper, B., Palter, J. B., Marsland, S., Chassignet, E., Curchitser, E., Griffies, S., & Weijer, W. (2019). In J. Zhu, M. Patterson, & L. Ying (Eds.), Sources and sinks of ocean mesoscale eddy energy: A joint US CLIVAR and CLIVAR workshop report (No. 2019-5). U.S. CLIVAR Project Office. https://doi.org/10.5065/ch5r-5034
Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., et al. (2009). Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Global Change Biology, 15(5), 1090–1103. https://doi.org/10.1111/j.1365-2486.2008.01823.x
Garreau, P., Garnier, V., & Schaeffer, A. (2011). Eddy resolving modelling of the Gulf of Lions and Catalan sea. Ocean Dynamics, 61(7), 991–1003. https://doi.org/10.1007/s10236-011-0399-2
Gaube, P., Barcelo, C., McGillicuddy, D. J., Jr., Domingo, A., Miller, P., Giffoni, B., et al. (2017). The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS One, 12(3). https://doi.org/10.1371/journal.pone.0172839
Gaube, P., Braun, C. D., Lawson, G. L., McGillicuddy, D. J., Penna, A. D., Skomal, G. B., et al. (2018). Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Scientific Reports, 8(1), 7363. https://doi.org/10.1038/s41598-018-25565-8
Gaube, P., & McGillicuddy, D. J. (2017). The influence of Gulf Stream eddies and meanders on near-surface chlorophyll. Deep Sea Research Part I: Oceanographic Research Papers, 122, 1–16. https://doi.org/10.1016/j.dsr.2017.02.006
Gaube, P., McGillicuddy, D. J., Jr, Chelton, D. B., Behrenfeld, M. J., & Strutton, P. G. (2014). Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. Journal of Geophysical Research: Oceans, 119(12), 8195–8220. https://doi.org/10.1002/2014jc010111
Greatbatch, R. J. (1987). A model for the inertial recirculation of a gyre. Journal of Marine Research, 45(3), 601–634. https://doi.org/10.1357/002224087788326821
Heslop, E. E., Ruiz, S., Allen, J., López-Jurado, J. L., Renault, L., & Tintoré, J. (2012). Autonomous underwater gliders monitoring variability at “choke points” in our ocean system: A case study in the western Mediterranean Sea. Geophysical Research Letters, 39(20), L20604. https://doi.org/10.1029/2012GL053717
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., et al. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227–238.
Hogg, N. G., & Stommel, H. (1985). On the relation between the deep circulation and the Gulf Stream. Deep sea research Part A. Oceanographic Research Papers, 32(10), 1181–1193. https://doi.org/10.1016/0198-0149(85)90002-0
Holland, W. R. (1978). The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. Journal of Physical Oceanography, 8(3), 363–392. https://doi.org/10.1175/1520-0485(1978)008<0363:tromei>2.0.co;2
Holland, W. R., & Lin, L. B. (1975). On the generation of mesoscale eddies and their contribution to the Oceanic General circulation. II. A parameter study. Journal of Physical Oceanography, 5(4), 658–669. https://doi.org/10.1175/1520-0485(1975)005<0658:otgome>2.0.co;2
Hu, Z. Y., Petrenko, A. A., Doglioli, A. M., & Dekeyser, I. (2011). Numerical study of eddy generation in the western part of the Gulf of Lion. Journal of Geophysical Research, 116(C12). https://doi.org/10.1029/2011jc007074
Ioannou, A., Stegner, A., Dubos, T., Le Vu, B., & Speich, S. (2020). Generation and intensification of mesoscale anticyclones by orographic wind jets: The case of Ierapetra eddies forced by the Etesians. Journal of Geophysical Research: Oceans, 125(8), e2019JC015810. https://doi.org/10.1029/2019jc015810
Ioannou, A., Stegner, A., Dumas, F., & Le Vu, B. (2020). Three-dimensional evolution of mesoscale anticyclones in the lee of Crete. Frontiers in Marine Science, 7, 1019. https://doi.org/10.3389/fmars.2020.609156
Isern-Fontanet, J., Font, J., García-Ladona, E., Emelianov, M., Millot, C., & Taupier-Letage, I. (2004). Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep Sea Research Part II: Topical Studies in Oceanography, 51(25–26), 3009–3028. https://doi.org/10.1016/j.dsr2.2004.09.013
Jansà, A. (1987). Distribution of the mistral: A satellite observation. Meteorology and Atmospheric Physics, 36, 201–214.
Jouanno, J., Sheinbaum, J., Barnier, B., & Molines, J.-M. (2009). The mesoscale variability in the Caribbean Sea. Part II: Energy sources. Ocean Modelling, 26(3), 226–239. https://doi.org/10.1016/j.ocemod.2008.10.006
Juza, M., Escudier, R., Pascual, A., Pujol, M.-I., Taburet, G., Troupin, C., et al. (2016b). Impacts of reprocessed altimetry on the surface circulation and variability of the Western Alboran Gyre. Advances in Space Research. https://doi.org/10.1016/j.asr.2016.05.026
Juza, M., Escudier, R., Vargas-Yáñez, M., Mourre, B., Heslop, E., Allen, J., & Tintoré, J. (2019). Characterization of changes in Western Intermediate Water properties enabled by an innovative geometry-based detection approach. Journal of Marine Systems, 191, 1–12. https://doi.org/10.1016/j.jmarsys.2018.11.003
Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora, S., et al. (2016). SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea. Journal of Operational Oceanography, 9(sup1), S155–S166. https://doi.org/10.1080/1755876X.2015.1117764
Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D., & Holm-Hansen, O. (2007). Eddies enhance biological production in the Weddell-Scotia confluence of the Southern Ocean. Geophysical Research Letters, 34(14). https://doi.org/10.1029/2007GL030430
Kang, D., & Curchitser, E. N. (2015). Energetics of eddy–mean flow interactions in the Gulf Stream region. Journal of Physical Oceanography, 45(4), 1103–1120. https://doi.org/10.1175/JPO-D-14-0200.1
Krom, M. D., Brenner, S., Kress, N., Neori, A., & Gordon, L. I. (1992). Nutrient dynamics and new production in a warm-core eddy from the eastern Mediterranean Sea. Deep sea research Part A. Oceanographic Research Papers, 39(3), 467–480. https://doi.org/10.1016/0198-0149(92)90083-6
Lobel, P. S., & Robinson, A. R. (1986). Transport and entrapment of fish larvae by ocean mesoscale eddies and currents in Hawaiian waters. Deep Sea Research Part A. Oceanographic Research Papers, 33(4), 483–500. https://doi.org/10.1016/0198-0149(86)90127-5
López-García, M. J., Millot, C., Font, J., & García-Ladona, E. (1994). Surface circulation variability in the Balearic Basin. Journal of Geophysical Research, 99(C2), 3285–3296. https://doi.org/10.1029/93JC02114
Mahadevan, A., & Archer, D. (2000). Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. Journal of Geophysical Research, 105(C1), 1209–1225. https://doi.org/10.1029/1999JC900216
Marbà, N., & Duarte, C. M. (2010). Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology, 16(8), 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x
Marshall, J. C. (2006). Eddy-mean-flow interaction in a barotropic ocean model. Quarterly Journal of the Royal Meteorological Society, 110(465), 573–590. https://doi.org/10.1002/qj.49711046502
Mason, E., & Pascual, A. (2013). Multiscale variability in the Balearic Sea: An altimetric perspective. Journal of Geophysical Research: Oceans, 118(6), 3007–3025. https://doi.org/10.1002/jgrc.20234
Millot, C. (1999). Circulation in the Western Mediterranean Sea. Journal of Marine Systems, 20(1), 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5
Millot, C., & Taupier-Letage, I. (2005). Circulation in the Mediterranean Sea. In The Mediterranean Sea (pp. 29–66). Springer. https://doi.org/10.1007/b107143
Mourre, B., Aguiar, E., Juza, M., Hernandez-Lasheras, J., Reyes, E., Heslop, E., et al. (2018). Assesment of high-resolution Regional Ocean prediction systems using multi-platform observations: Illustrations in the Western Mediterranean Sea. In New Frontiers in Operational Oceanography (Vol. 663–694). GODAE Ocean View. https://doi.org/10.17125/gov2018
Nagai, T., Gruber, N., Frenzel, H., Lachkar, Z., McWilliams, J. C., & Plattner, G.-K. (2015). Dominant role of eddies and filaments in the offshore transport of carbon and nutrients in the California Current System. Journal of Geophysical Research: Oceans, 120(8), 5318–5341. https://doi.org/10.1002/2015JC010889
Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Research and Oceanographic Abstracts, 17(3), 445–454. https://doi.org/10.1016/0011-7471(70)90059-8
Onken, R., Álvarez, A., Fernández, V., Vizoso, G., Basterretxea, G., Tintoré, J., et al. (2008). A forecast experiment in the Balearic Sea. Journal of Marine Systems, 71(1), 79–98. https://doi.org/10.1016/j.jmarsys.2007.05.008
Parravicini, V., Guidetti, P., Morri, C., Montefalcone, M., Donato, M., & Bianchi, C. N. (2010). Consequences of sea water temperature anomalies on a Mediterranean submarine cave ecosystem. Estuarine. Coastal and Shelf Science, 86(2), 276–282. https://doi.org/10.1016/j.ecss.2009.11.004
Pascual, A., Buongiorno, N. B., Larnicol, G., Emelianov, M., & Gomis, D. (2002). A case of an intense anticyclonic eddy in the Balearic Sea (western Mediterranean). Journal of Geophysical Research, 107(C11), 4–1. https://doi.org/10.1029/2001jc000913
Pedlosky, J. (1982). Quasigeostrophic motion of a stratified fluid on a sphere. In Geophysical fluid dynamics (pp. 314–422). Springer. https://doi.org/10.1007/978-3-662-25730-2_6
Peng, Q., Xie, S. P., Wang, D., Zheng, X. T., & Zhang, H. (2019). Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nature Communications, 10(1), 1–10. https://doi.org/10.1038/s41467-018-08258-8
Pérez, T., Garrabou, J., Sartoretto, S., Harmelin, J.-G., Francour, P., & Vacelet, J. (2000). Mortalité massive d’invertébrés marins: Un événement sans précédent en méditerranée nord-occidentale. Comptes Rendus de l'Academie des Sciences - Series III: Sciences de la Vie, 323(10), 853–865.
Pessini, F., Olita, A., Cotroneo, Y., & Perilli, A. (2018). Mesoscale eddies in the Algerian Basin: Do they differ as a function of their formation site? Ocean Science, 14(4), 669–688. https://doi.org/10.5194/os-14-669-2018
Poulain, P. M., Menna, M., & Mauri, E. (2012). Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. Journal of Physical Oceanography, 42(6), 973–990. https://doi.org/10.1175/jpo-d-11-0159.1
Prieto, L., Macías, D., Peliz, A., & Ruiz, J. (2015). Portuguese Man-of-War (Physalia physalis) in the Mediterranean: A permanent invasion or a casual appearance? Scientific Reports, 5(1), 1–7. https://doi.org/10.1038/srep11545
Pujol, M. I., & Larnicol, G. (2005). Mediterranean sea eddy kinetic energy variability from 11 years of altimetric data. Journal of Marine Systems, 58(3–4), 121–142. https://doi.org/10.1016/j.jmarsys.2005.07.005
Rubio, A., Arnau, P. A., Espino, M., Flexasdel, M. M., Jordà, G., Salat, J., et al. (2005). A field study of the behaviour of an anticyclonic eddy on the Catalan continental shelf (NW Mediterranean). Progress in Oceanography, 66(2), 142–156. https://doi.org/10.1016/j.pocean.2004.07.012
Rubio, A., Barnier, B., Jordà, G., Espino, M., & Marsaleix, P. (2009). Origin and dynamics of mesoscale eddies in the Catalan Sea (NW Mediterranean): Insight from a numerical model study. Journal of Geophysical Research, 114(C6). https://doi.org/10.1029/2007JC004245
Rypina, I. I., Pratt, L. J., Entner, S., Anderson, A., & Cherian, D. (2020). The influence of an eddy in the success rates and distributions of passively advected or actively swimming biological organisms crossing the continental slope. Journal of Physical Oceanography, 50(7), 1839–1852. https://doi.org/10.1175/jpo-d-19-0209.1
Sabatés, A., Salat, J., Palomera, I., Emelianov, M., Fernández de Puelles, M. L., & Olivar, M. P. (2007). Advection of anchovy (Engraulis encrasicolus) larvae along the Catalan continental slope (NW Mediterranean). Fisheries Oceanography, 16(2), 130–141. https://doi.org/10.1111/j.1365-2419.2006.00416.x
Sabatés, A., Salat, J., Raya, V., & Emelianov, M. (2013). Role of mesoscale eddies in shaping the spatial distribution of the coexisting Engraulis encrasicolus and Sardinella aurita larvae in the northwestern Mediterranean. Journal of Marine Systems, 111, 108–119. https://doi.org/10.1016/j.jmarsys.2012.10.002
Salihoǧlu, İ., Saydam, C., Baştürk, Ö., Yilmaz, K., Göçmen, D., Hatipoǧlu, E., & Yilmaz, A. (1990). Transport and distribution of nutrients and chlorophyll-a by mesoscale eddies in the northeastern Mediterranean. Marine Chemistry, 29, 375–390. https://doi.org/10.1016/0304-4203(90)90024-7
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): Split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002
Siegel, D. A., Peterson, P., McGillicuddy, D. J., Jr, Maritorena, S., & Nelson, N. B. (2011). Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophysical Research Letters, 38(13). https://doi.org/10.1029/2011GL047660
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., & Dobricic, S. (2019). Mediterranean Sea physical Reanalysis (CMEMS MED-physics) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004
Small, R. J., deSzoeke, S. P., Xie, S. P., O’Neill, L., Seo, H., Song, Q., et al. (2008). Air–sea interaction over ocean fronts and eddies. Oceanic Fronts, 45(3), 274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001
Storch, J.-S. V., Eden, C., Fast, I., Haak, H., Hernández-Deckers, D., Maier-Reimer, E., et al. (2012). An estimate of the lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. Journal of Physical Oceanography, 42(12), 2185–2205. https://doi.org/10.1175/JPO-D-12-079.1
Taupier-Letage, I., Puillat, I., Millot, C., & Raimbault, P. (2003). Biological response to mesoscale eddies in the Algerian Basin. Journal of Geophysical Research, 108(C8). https://doi.org/10.1029/1999JC000117
Tintoré, J., Pinardi, N., Álvarez-Fanjul, E., Aguiar, E., Álvarez-Berastegui, D., Bajo, M., et al. (2019). Challenges for sustained observing and forecasting systems in the Mediterranean Sea. Frontiers in Marine Science, 6, 568. https://doi.org/10.3389/fmars.2019.00568
Tintoré, J., Vizoso, G., Casas, B., Heslop, E., Pascual, A., Orfila, A., et al. (2013). SOCIB: The Balearic Islands coastal ocean observing and forecasting system responding to science, technology and society needs. Marine Technology Society Journal, 47(1), 101–117.
Tintoré, J., Wang, D.-P., & La Violette, P. E. (1990). Eddies and thermohaline intrusions of the shelf/slope front off the northeast Spanish coast. Journal of Geophysical Research, 95(C2), 1627–1633. https://doi.org/10.1029/JC095iC02p01627
Wang, Y., Zhang, H.-R., Chai, F., & Yuan, Y. (2018). Impact of mesoscale eddies on chlorophyll variability off the coast of Chile. PLoS One, 13(9), e0203598. https://doi.org/10.1371/journal.pone.0203598
Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2), 273–294. https://doi.org/10.1016/0167-2789(91)90088-Q
Xie, L., Liu, X., & Pietrafesa, L. J. (2007). Effect of bathymetric curvature on Gulf Stream instability in the vicinity of the Charleston Bump. Journal of Physical Oceanography, 37(3), 452–475. https://doi.org/10.1175/JPO2995.1
Zhan, P., Subramanian, A. C., Yao, F., Kartadikaria, A. R., Guo, D., & Hoteit, I. (2016). The eddy kinetic energy budget in the Red Sea. Journal of Geophysical Research: Oceans, 121(7), 4732–4747. https://doi.org/10.1002/2015JC011589
Zhang, Z., Wang, W., & Qiu, B. (2014). Oceanic mass transport by mesoscale eddies. Science, 345(6194), 322–324. https://doi.org/10.1126/science.1252418