[en] Mining dumps, particularly inactive or abandoned mines located near makeshift mining towns, have significant
environmental and social impacts. The Touissit-Boubker lead mine, operated for years by the Touissit Mining
Company (CMT) and abandoned without rehabilitation, is an example of this socio-economic and environmental
collapse. Large quantities of harmful solid waste containing clayey aggregates rich in lead sulphide have been
dumped in dykes on the edge of the village of Touissit. These mining wastes were rewashed to extract galena
causing a depletion of lead sulphide. The objective of this study is to evaluate the possibility of using washed mining waste as sandy aggregate for the manufacture of masonry mortar. Cylindrical mortar tests, made with various
proportions of sand and mine waste were characterized by X-ray diffraction, scanning electron microscopy and
mechanical analysis by uni-axial compressive strength after curing for 3, 14, 28 and 60 days. The results obtained
revealed that the mining waste consists of dolomite, quartz and clay. The dehydration rate of the mortar specimens
is strongly affected by the amount of the waste added and the grain size. The mechanical strength of the mortar
specimens mostly depends on the grain-size of the aggregates than on the amount of mine waste added. The microstructure of the mortar did not change when sand was replaced by mine waste of the same g
Disciplines :
Earth sciences & physical geography
Author, co-author :
El Khazanti, Faiçal; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Geology of Mining and Energy Resources (GRME), Faculty of Sciences and Technology, Hassan First University of Settat, 50 Rue Ibnou Lhaytham B.P. 577, 26002, Settat, Morocco > geologie
Ahmed Rachid; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Geology of Mining and Energy Resources (GRME), Faculty of Sciences and Technology, Hassan First University of Settat, 50 Rue Ibnou Lhaytham B.P. 577, 26002, Settat, Morocco > geologie
Hicham Nasri; Applied Geosciences Laboratory, Faculty of Sciences, University Mohammed First, Mohammed V avenue, Oujda, P.O. Box 60000, Morocco
Yassine Ettayea; Laboratory Physico-Chemistry of Processes and Materials (PCPM), Geology of Mining and Energy Resources (GRME), Faculty of Sciences and Technology, Hassan First University of Settat, 50 Rue Ibnou Lhaytham B.P. 577, 26002, Settat, Morocco
El Ouahabi, Meriam ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
El Khadir Gharibi; Laboratory of Applied Chemistry and Environment, Mineral Solid Chemistry, Faculty of Sciences, Mohammed First University, Mohammed V avenue, Oujda 60000, Morocco
Language :
English
Title :
Assessment of a Mining-Waste Dump of Galena Mine in the East of Morocco for Possible Use in Civil Engineering
1. Akhter H., Butler L.G., Branz S., Cartledge F.K., Tittlebaum M.E. 1990. Immobilization of As, Cd, Cr and Pb-containing soils by using cement or pozzolanic fixing agents. Journal of hazardous materials, 24(2-3), 145-155. https://doi.org/10.1016/0304-3894(90)87006-4
2. Almeida J., Ribeiro A.B., Silva A.S., Faria P. 2020. Overview of mining residues incorporation in construction materials and barriers for full-scale application. Journal of Building Engineering, 29, 101215. https://doi.org/10.1016/j.jobe.2020.101215
3. Argane R., Benzaazoua M., Bouamrane A., Hakkou R. 2014. Valorisation des rejets miniers du district Pb-Zn de touissit-boubker (région orientale-Maroc). Déchets Sciences et Techniques, 66, 38-44. https://dx.doi.org/10.4267/dechets-sciences-techniques.629
4. Argane R., El Adnani M., Benzaazoua M., Bouzahzah H., Khalil A., Hakkou R., Taha Y. 2016. Geochemical behavior and environmental risks related to the use of abandoned base-metal tailings as construction material in the upper-Moulouya district, Morocco. Environmental Science and Pollution Research, 23(1), 598-611. https://doi.org/10.1007/s11356-015-5292-y
5. ASM. 2015. Direction de la Statistique, Haut-Commissariat du Plan, Maroc.
6. Belferrag A. 2016. Contribution à l’amélioration des propriétés mécaniques et rhéologiques des bétons de sable de dunes (Doctoral dissertation, Université Mohamed Khider-Biskra).
7. Bell L.C. 2001. Establishment of native ecosystems after mining Australian experience across diverse biogeographic zones. Ecological Engineering, 17(2-3), 179-186. https://doi.org/10.1016/S0925-8574(00)00157-9
8. Blaikie P. 1995. Changing environments or changing views? A political ecology for developing countries. Geography, 203-214.
9. Bouabdellah M. 2009. Les paléo-karsts hydrothermaux à remplissage de sulfures du district de Touissit-Bou Beker (Maroc nord oriental): origine (s) et implication (s). Collection EDYTEM. Cahiers de géographie, 9(1), 23-32.
10. Bruneel O. 2016. Implication des microorganismes dans les biotransformations et processus de transfert des métaux et métalloïdes dans les environnements contaminés par les mines, Habilitation à Diriger des Recherches (Doctoral dissertation, Université de Montpellier).
11. Courard L., Tabarelli E., Michel F., Delvoie S., Bouarroudj M.E., Colman C., Zhao Z. 2019. Optimizing performances of recycled aggregates for improving concrete properties. Proceedings SMSS 2019.
12. Delvigne J. 1965. Pédogenèse en zone tropicale: la formation des minéraux secondaires en milieu ferrallitique 13. IRD Editions.
13. Derakhshani S.M., Schott D.L., Lodewijks G. 2015. Micro–macro properties of quartz sand: experimental investigation and DEM simulation. Powder Technology 269, 127-138. https://doi.org/10.1016/j.powtec.2014.08.072
14. Dos Santos Souza C., Antunes M.L.P., Dalla Valentina L.V.O., Rangel E.C., da Cruz N.C. 2019. Use of waste foundry sand (WFS) to produce protective coatings on aluminum alloy by plasma electrolytic oxidation. Journal of Cleaner Production 222, 584-592. https://doi.org/10.1016/j.jclepro.2019.03.013
15. El Machi A., Mabroum S., Taha Y., Tagnit-Hamou A., Benzaazoua M., Hakkou R. 2021. Use of flint from phosphate mine waste rocks as an alternative aggregates for concrete. Construction and Building Materials, 271, 121886. https://doi.org/10.1016/j.conbuildmat.2020.121886
16. Gayana B.C., Ram Chandar K. 2018. Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review. Advances in Concrete Construction, 6(3), 221-243.
17. Gonçalves J.P., Tavares L.M., Toledo Filho R.D., Fairbairn E.M.R., Cunha E.R. 2007. Comparison of natural and manufactured fine aggregates in cement mortars. Cement and Concrete Research, 37(6), 924-932. https://doi.org/10.1016/j.cemconres.2007.03.009
18. Gunasekaran S., Anbalagan G. 2007. Thermal decomposition of natural dolomite. Bulletin of Materials Science, 30(4), 339-344. https://doi.org/10.1007/s12034-007-0056-z
19. Haach V.G., Vasconcelos G., Lourenço P.B. 2011. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Construction and Building Materials, 25(6), 2980-2987. https://doi.org/10.1016/j.conbuildmat.2010.11.011
20. Hakkou R., Benzaazoua M., Bussiere B. 2008. Acid mine drainage at the abandoned Kettara mine (Morocco): 2. Mine waste geochemical behavior. Mine Water and the Environment, 27(3), 160-170. https://doi.org/10.1007/s10230-008-0035-7
21. Harrou A., Gharibi E.K., Taha Y., Fagel N., El Ouahabi M. 2020. Phosphogypsum and black steel slag as additives for ecological bentonitebased materials: Microstructure and characterization. Mineral, 10(12), 1067. https://doi.org/10.3390/min10121067
22. Hudson-Edwards K.A., Dold B. 2015. Mine Waste Characterization, Management and Remediation. Minerals, 5, 82-85. https://doi.org/10.3390/min5010082
23. Khalil A., Hanich L., Bannari A., Zouhri L., Pourret O., Hakkou R. 2013. Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. Journal of Geochemical Exploration, 125, 117-129. https://doi.org/10.1016/j.gexplo.2012.11.018
24. Khalil N.M., Algamal Y. 2019. Environmental and economical aspects of partial replacement of ordinary Portland cement with Saudi raw minerals. Silicon, 11(1), 241-255. https://doi.org/10.1007/s12633-018-9929-6
25. Kim Y., Caumon M.C., Barres O., Sall A., Cauzid J. 2021. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 261, 119980. https://doi.org/10.1016/j.saa.2021.119980
26. Marcoux É., Jébrak M. 2021. Plombotectonique des gisements du Maroc. BSGF-Earth Sciences Bulletin, 192(1), 31. https://doi.org/10.1051/bsgf/2021019
27. McWhinney H.G., Cocke D.L., Balke K., Ortego J.D. 1990. An investigation of mercury solidification and stabilization in Portland cement using X-ray photoelectron spectroscopy and energy dispersive spectroscopy. Cement and concrete research, 20(1), 79-91. https://doi.org/10.1016/0008-8846(90)90119-I
28. Olszak-Humienik M., Jablonski M. 2015. Thermal behavior of natural dolomite. Journal of Thermal Analysis and Calorimetry, 119(3), 2239-2248. https://doi.org/10.1007/s10973-014-4301-6
29. Ostrowski K., Stefaniuk D., Sadowski Ł., Krzywiński K., Gicala M., Różańska M. 2020. Potential use of granite waste sourced from rock processing for the application as coarse aggregate in high-performance self-compacting concrete. Construction and Building Materials, 238, 117794. https://doi.org/10.1016/j.conbuildmat.2019.117794
30. Oumnih S., Bekkouch N., Gharibi E.K., Fagel N., Elhamouti K., El Ouahabi M. 2019. Phosphogypsum waste as additives to lime stabilization of bentonite. Sustainable Environment Research, 29(1), 1-10. https://doi.org/10.1186/s42834-019-0038-z
31. Pappu A., Saxena M., Asolekar S.R. 2007. Solid wastes generation in India and their recycling potential in building materials. Building and environment, 42(6), 2311-2320. https://doi.org/10.1016/j.buildenv.2006.04.015
32. Perraton D., Aitcin P.C. 2001. Permeability of cover concrete: can choice of aggregates turn out to be more determinant than the W/C ratio? Bulletin des Laboratoires des Ponts et Chaussées.
33. PNM Projet de Norme Marocaine 10.1.045. 2020. Institut Marocain de Normalisation (IMANOR), 86
34. Powers T.C. 1939.The bleeding of potland cement paste, mortar, and concrete. Journal Proceedings, 35(6), 465-480.
36. Reichert J.M., Mentges M.I., Rodrigues M.F., Cavalli J.P., Awe G.O., Mentges L.R. 2018. Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena, 165, 345-357. https://doi.org/10.1016/j.catena.2018.02.014
37. Rouleau A., Gasquet D. 2017. Défis de la formation dans le secteur minier en Afrique francophone. L’industrie minière et le développement durable, 69. Institut de la Francophonie pour le développement durable (IFDD), Université du Québec à Chicoutimi, 133.
38. Smouni A., Ater M., Auguy F., Laplaze L., El Mzibri M., Berhada F. Doumas P. 2010. Évaluation de la contamination par les éléments-traces métalliques dans une zone minière du Maroc oriental. Cahiers Agricultures, 19(4), 273-279. https://doi.org/10.1684/agr.2010.0413
39. Stefanidou M. 2016. Crushed and river-origin sands used as aggregates in repair mortars. Geosciences, 6(2), 23. https://doi.org/10.3390/geosciences6020023
40. Sun J.S., Dou Y.M., Chen Z.X., Yang C.F. 2011. Experimental study on the performances of cement stabilized iron ore tailing gravel in highway application. Applied Mechanics and Materials, 97, 425-428. https://doi.org/10.4028/www.scientific.net/AMM.97-98.425
41. Taha Y., Benzaazoua M., Edahbi M., Mansori M., Hakkou R. 2018. Leaching and geochemical behavior of fired bricks containing coal wastes. Journal of environmental management, 209, 227-235. https://doi.org/10.1016/j.jenvman.2017.12.060
42. Tegguer A.D. 2012. Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach. Construction and Building Materials, 27(1), 112-116. https://doi.org/10.1016/j.conbuildmat.2011.08.018
43. Valverde J.M., Perejon A., Medina S., Perez-Maqueda L.A. 2015. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis. Physical Chemistry Chemical Physics, 17(44), 30162-30176. https://doi.org/10.1039/C5CP05596B
44. Wadjinny A. 1987. Le district plombo-zincifère de Touissit: présentation géologique et métallogénique – Bulletin de l’industrie minérale, Les techniques, 70.
45. Wadjinny A. 1998. Le plomb au Maroc: cas des districts de Touissit et de Jbel Aouam. Chronique de la recherche minière, 9(28), 531-532.
46. Wang C.L., Ni W., Zhang S.Q., Wang S., Gai G.S., Wang W.K. 2016. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Construction and Building Materials, 104, 109-115. https://doi.org/10.1016/j.conbuildmat.2015.12.041
47. Weiss N.L. 1985. Society of Mining Engineers (New York). Society of Mining Engineers of the American Institute of Mining, Metallurgical, and Petroleum Engineers SME mineral processing handbook, 2, 100-111.
48. Yu B. 2012. Les caractéristiques mécaniques et la microstructure du béton des granulats recyclés a hautes performances (Doctoral dissertation, Université de Lorraine).
49. Zhao S., Fan J., Sun W. 2014. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete. Construction and Building Materials, 50, 540-548. https://doi.org/10.1016/j.conbuildmat.2013.10.019