Chlorophyll a fluorescence; Fertilizer form; JIP-test parameters; Phosphorus; PLSR
Abstract :
[en] Phosphorus (P) is an essential macronutrient for crop growth and food production since it is involved in many biochemical processes in plants. Its deficiency causes physiological, biochemical, and morphological changes. These visual changes occur when the photosynthetic apparatus system is already damaged, and they are often irreversible. Consequently, it is necessary to develop novel methods for determining nutritional plant status early in the season for rapid intervention in crop production. This challenge can be tackled using emerging techniques for crop monitoring and rapid detection of stresses. Chlorophyll a fluorescence has proved its potential to detect early abiotic stresses effects on photosynthetic efficiency. Here, we evaluate the potential of this technique to assess phosphorus status in wheat leaves (Triticum durum L.), grown in different concentrations of phosphorus insured by different fertilizer forms (two orthophosphates and one polyphosphate). Results have shown a significant effect of the applied P concentration and fertilizer form on P leaves uptake at an early development stage and improved chlorophyll content index. Phosphorus level and fertilizer form were found to affect also the kinetics of the Chlorophyll a fluorescent transient (OJIP-transient) and related fluorescence parameters. Three predictive models were generated and compared. The results from partial least squares regression (PLSR) performed on fluorescence parameters with cross-validation (CV) were: the root mean square error and the determination coefficient of cross-validation (RMSECV = 0.095 and R2 = 0.67, respectively). The obtained model predicted phosphorus leaf content with RMSE of prediction (RMSEP) of 0.079 g 0.100 g−1 and R2 of 0.56. Results showed that the generated PLS predictive model using chlorophyll a fluorescence parameters has some potential to detect phosphorus status in wheat fresh leaves and can be highly informative about the photosynthetic apparatus state under P deficiency.
Disciplines :
Agriculture & agronomy
Author, co-author :
El-Mejjaouy, Yousra ; Université de Liège - ULiège > TERRA Research Centre ; University Mohammed VI Polytechnic (UM6P) – AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, Morocco
Lahrir, Meryeme; University Mohammed VI Polytechnic (UM6P) – AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, Morocco
Naciri, Rachida; University Mohammed VI Polytechnic (UM6P) – AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, Morocco
Zeroual, Youssef; University Mohammed VI Polytechnic (UM6P) – AgoBioSciences, Plant Stress Physiology Laboratory, Benguerir, Morocco
Mercatoris, Benoît ; Université de Liège - ULiège > TERRA Research Centre > Biosystems Dynamics and Exchanges (BIODYNE)
Dumont, Benjamin ; Université de Liège - ULiège > Département GxABT > Plant Sciences
Oukarroum, Abdallah; University Mohammed VI Polytechnic (UM6P), High Throughput Multidisciplinary Research Laboratory, Benguerir, Morocco
Language :
English
Title :
How far can chlorophyll a fluorescence detect phosphorus status in wheat leaves (Triticum durum L.)
Aleksandrov, V., Identification of nutrient deficiency in bean plants by prompt chlorophyll fluorescence measurements and Artificial Neural Networks. bioRxiv, 2019, 664235, 10.1101/664235.
Boussadia, O., Steppe, K., Van Labeke, M.C., Lemeur, R., Braham, M., Effects of nitrogen deficiency on leaf chlorophyll fluorescence parameters in two olive tree cultivars ‘Meski’ and ‘Koroneiki. J. Plant Nutr. 38 (2015), 2230–2246, 10.1080/01904167.2015.1069339.
Buschmann, C., Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res., 2007, 10.1007/S11120-007-9187-8.
Bussotti, F., Gerosa, G., Digrado, A., Pollastrini, M., Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol. Indic., 2020, 108, 10.1016/j.ecolind.2019.105686.
Carstensen, A., Herdean, A., Schmidt, S.B., Sharma, A., Spetea, C., Pribil, M., Husted, S., The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiol. 177 (2018), 271–284, 10.1104/pp.17.01624.
Cetner, M.D., Kalaji, H.M., Borucki, W., Kowalczyk, K., Phosphorus deficiency affects the i-step of chlorophyll a fluorescence induction curve of radish. Photosynthetica 58 (2020), 671–681, 10.32615/ps.2020.015.
Chen, S., Yang, J., Zhang, M., Strasser, R.J., Qiang, S., Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. Environ. Exp. Bot. 122 (2016), 126–140, 10.1016/j.envexpbot.2015.09.011.
Chtouki, M., Naciri, R., Garré, S., Nguyen, F., Oukarroum, A., Chickpea plant responses to polyphosphate fertiliser forms and drip fertigation frequencies: effect on photosynthetic performance and phenotypic traits. Funct. Plant Biol., 2021, 10.1071/fp21035.
Delosme, R., Étude de l′induction de fluorescence des algues vertes et des chloroplastes au début d′une illumination intense. Biochim. Biophys. Acta Bioenerg. 143 (1967), 108–128, 10.1016/0005-2728(67)90115-6.
Frydenvang, J., van Maarschalkerweerd, M., Carstensen, A., Mundus, S., Schmidt, S.B., Pedas, P.R., Laursen, K.H., Schjoerring, J.K., Husted, S., Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol. 169 (2015), 353–361, 10.1104/pp.15.00823.
Govindjee, Stirbet A., On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 104 (2011), 236–257, 10.1016/J.JPHOTOBIOL.2010.12.010.
Hammond, J.P., Broadley, M.R., Bowen, H.C., Spracklen, W.P., Hayden, R.M., White, P.J., Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PLoS One, 2011, 6, 10.1371/JOURNAL.PONE.0024606.
Kalaji, H.M., Oukarroum, A., Alexandrov, V., Kouzmanova, M., Brestic, M., Zivcak, M., Samborska, I.A., Magdalena, Allakhverdiev, S.I., Vasilij, G., Identification of nutrient deficiency in maize and tomato plants by invivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 81 (2014), 16–25, 10.1016/j.plaphy.2014.03.029.
Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., Ladle, R.J., Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant, 2016, 38, 10.1007/s11738-016-2113-y.
Kalaji, H.M., Bąba, W., Gediga, K., Goltsev, V., Samborska, I.A., Cetner, M.D., Dimitrova, S., Piszcz, U., Bielecki, K., Karmowska, K., Dankov, K., Kompała-Bąba, A., Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 136 (2018), 329–343, 10.1007/s11120-017-0467-7.
Kim, H.J., Li, X., Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience 51 (2016), 1001–1009, 10.21273/hortsci.51.8.1001.
Kumar, D., Singh, H., Raj, S., Soni, V., Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochem. Biophys. Rep., 24, 2020, 100813, 10.1016/J.BBREP.2020.100813.
Lambers, H., Brundrett, M.C., Raven, J.A., Hopper, S.D., Plant mineral nutrition in ancient landscapes: high plant species diversity on infertile soils is linked to functional diversity for nutritional strategies. Plant Soil, 2010, 10.1007/S11104-010-0444-9.
Liu, C., Liu, Y., Lu, Y., Liao, Y., Nie, J., Yuan, X., Chen, F., Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ, 2019, 2019, 10.7717/PEERJ.6240/SUPP-2.
Maillard, A., Diquélou, S., Billard, V., Laîné, P., Garnica, M., Prudent, M., Garcia-Mina, J.-M., Yvin, J.-C., Ourry, A., Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency. Front. Plant Sci. 6 (2015), 1–15, 10.3389/FPLS.2015.00317.
Meng, X., Chen, W.-W., Wang, Y.-Y., Huang, Z.-R., Ye, X., Chen, L.-S., Yang, L.-T., Effects of phosphorus deficiency on the absorption of mineral nutrients, photosynthetic system performance and antioxidant metabolism in Citrus grandis. PLoS One, 16, 2021, e0246944, 10.1371/JOURNAL.PONE.0246944.
Mollier, A., Pellerin, S., Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot. 50 (1999), 487–497, 10.1093/jxb/50.333.487.
Nord, E.A., Shea, K., Lynch, J.P., Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants. Ann. Bot. 108 (2011), 391–404, 10.1093/AOB/MCR143.
Oukarroum, A., Madidi, S., El, Schansker, G., Strasser, R.J., Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 60 (2007), 438–446, 10.1016/J.ENVEXPBOT.2007.01.002.
Oukarroum, A., Bussotti, F., Goltsev, V., Kalaji, H.M., Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ. Exp. Bot. 109 (2015), 80–88, 10.1016/J.ENVEXPBOT.2014.08.005.
Qiu, N.W., Zhang, W.R., Yan, X.H., Wang, R.J., Tian, L., Han, G.L., Zhou, F., The toxicity of BDE-47 to the photosystem of Lemna minor fronds. Biol. Plant. 64 (2020), 591–597, 10.32615/BP.2020.091.
Razaq, M., Zhang, P., Shen, H., Salahuddin, Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS One, 12, 2017, e0171321, 10.1371/journal.pone.0171321.
Rychter, A.M., Rao, I.M., Cardoso, J.A., Role of phosphorus in photosynthetic carbon assimilation and partitioning. third ed. Handbook of Photosynthesis, 2018, 603–625, 10.1201/9781315372136-33.
Samborska, I.A., Kalaji, H.M., Sieczko, L., Borucki, W., Mazur, R., Kouzmanova, M., Goltsev, V., Can just one-second measurement of chlorophyll a fluorescence be used to predict sulphur deficiency in radish (Raphanus sativus L. sativus) plants?. Curr. Plant Biol., 19, 2019, 100096, 10.1016/j.cpb.2018.12.002.
Schansker, G., Strasser, R.J., Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. Photosynthesis Research, 2005, Springer, 145–151, 10.1007/s11120-004-7156-z.
Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., Zhang, W., Zhang, F., Phosphorus dynamics: from soil to plant. Plant Physiol. 156 (2011), 997–1005, 10.1104/pp.111.175232.
Siedliska, A., Baranowski, P., Pastuszka-Woźniak, J., Zubik, M., Krzyszczak, J., Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance. BMC Plant Biol., 2021, 21, 10.1186/s12870-020-02807-4.
Soudek, P., Hrdinová, A., Rodriguez Valseca, I.M., Lhotáková, Z., Mihaljevič, M., Petrová, Kofroňová, M., Moťková, K., Albrechtová, J., Vaněk, T., Thorium as an environment stressor for growth of Nicotiana glutinosa plants. Environ. Exp. Bot. 164 (2019), 84–100, 10.1016/J.ENVEXPBOT.2019.03.027.
Strasser, R., Srivastava, A., Tsimilli-Michael, M., The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynth. Mech. Regul. Adapt., 2000, 443–480.
Strasser, R.J., Tsimilli-Michael, M., Srivastava, A., Analysis of the chlorophyll a fluorescence transient. Advances in Photosynthesis and Respiration, 2004, Springer, Dordrecht, 321–362, 10.1007/978-1-4020-3218-9_12.
Tantray, A.Y., Bashir, S.S., Ahmad, A., Low nitrogen stress regulates chlorophyll fluorescence in coordination with photosynthesis and Rubisco efficiency of rice. Physiol. Mol. Biol. Plants, 26, 2020, 83, 10.1007/S12298-019-00721-0.
Tikkanen, M., Mekala, N.R., Aro, E.M., Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim. Biophys. Acta Bioenerg. 1837 (2014), 210–215, 10.1016/J.BBABIO.2013.10.001.
Viégas, I., de, J.M., Cordeiro, R.A.M., Almeida, G.M., de, Silva, Silva, D.A.S., da, B.C., Okumura, R.S., Júnior, M.L., da, S., Silva, S.P., da, Freitas, de, J.M.N., Viégas, I., de, J.M., Cordeiro, R.A.M., Almeida, G.M., de, Silva, Silva, D.A.S., da, B.C., Okumura, R.S., Júnior, M.L., da, S., Silva, S.P., da, Freitas, de, J.M.N., Growth and visual symptoms of nutrients deficiency in mangosteens (Garcinia mangostana L.). Am. J. Plant Sci. 9 (2018), 1014–1028, 10.4236/AJPS.2018.95078.
Yan, D., Zhang, X., Zhang, L., Ye, S., Zeng, L., Liu, J., Li, Q., He, Z., CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development. Plant J. 82 (2015), 12–24, 10.1111/tpj.12784.
Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G., Effect of phosphorus deficiency on reflectance and chlorophyll fluorescence of cotyledons of oilseed rape (Brassica napus L.). J. Agron. Crop Sci. 195 (2009), 186–196, 10.1111/j.1439-037X.2008.00359.x.
Zadocks, J.C., Chang, T.T., Konzak, C.F., A decimal code for the growth stages of cereals. Weed Res. 14 (1974), 415–421, 10.1111/J.1365-3180.1974.TB01084.X.
Zhao, L.-S., Li, K., Wang, Q.-M., Song, X.-Y., Su, H.-N., Xie, B.-B., Zhang, X.-Y., Huang, F., Chen, X.-L., Zhou, B.-C., Zhang, Y.-Z., Nitrogen starvation impacts the photosynthetic performance of porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci. Rep. 71:7 (2017), 1–11, 10.1038/s41598-017-08428-6.