Isoptera; biogeography; ecology; feeding group; mitogenomes; stable isotopes; Soil; Animals; Diet; Ecosystem; Genome, Mitochondrial; Isoptera/genetics; General Agricultural and Biological Sciences; General Environmental Science; General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine
Abstract :
[en] Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Zoology Entomology & pest control Environmental sciences & ecology
Author, co-author :
Hellemans, Simon ; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
Šobotník, Jan ; Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
Lepoint, Gilles ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Laboratoire d'Ecologie trophique et isotopique
Mihaljevič, Martin ; Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
Roisin, Yves ; Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
Bourguignon, Thomas ; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan ; Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
Language :
English
Title :
Termite dispersal is influenced by their diet.
Publication date :
25 May 2022
Journal title :
Proceedings of the Royal Society. Biological Sciences
ČZU - Ceska Zemedelska Univerzita v Praze JSPS - Japan Society for the Promotion of Science F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
The mitochondrial genomes generated in this study are available on GenBank under accession nos. OK163842–OK163858 and OL469804–OL469805 (electronic supplementary material, data S1, sheet 3).
The mitochondrial genomes generated in this study are available on GenBank under accession nos. OK163842–OK163858 and OL469804–OL469805 (electronic supplementary material, data S1, sheet 3).
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Krishna K, Grimaldi DA, Krishna V, Engel MS. 2013 Treatise on the Isoptera of the World. 1. Introduction. Bull. Am. Museum Nat. Hist. 377, 1-200. (doi: 10. 1206/377. 1)
Bignell DE, Abe T, Higashi M. 2000 Termites in ecosystems. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 363-387. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Holt JA et al. 2000 Termite and soil properties. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 389-407. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Donovan SE, Eggleton P, Bignell DE. 2001 Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26, 356-366. (doi: 10. 1046/j. 1365-2311. 2001. 00342. x)
Tayasu I, Abe T, Eggleton P, Bignell DE. 1997 Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol. Entomol. 22, 343-351. (doi: 10. 1046/j. 1365-2311. 1997. 00070. x)
Eggleton P, Tayasu I. 2001 Feeding groups, lifetypes and the global ecology of termites. Ecol. Res. 16, 941-960. (doi: 10. 1046/j. 1440-1703. 2001. 00444. x)
Potapov AM, Tiunov AV, Scheu S. 2019 Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37-59. (doi: 10. 1111/brv. 12434)
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y. 2011 Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36, 261-269. (doi: 10. 1111/j. 1365-2311. 2011. 01265. x)
Jones DT et al. 2011 Global biogeography of termites: a compilation of sources. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 477-498. Dordrecht, The Netherlands: Springer.
Eggleton P. 2000 Global patterns of termite diversity. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 25-51. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Bourguignon T et al. 2015 The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406-421. (doi: 10. 1093/molbev/msu308)
Bourguignon T et al. 2017 Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34, 589-597. (doi: 10. 1093/molbev/msw253)
Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. 2016 Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. R. Soc. B 283, 20160179. (doi: 10. 1098/rspb. 2016. 0179)
Wang M, Buek A, Šobotník J, Sillam-Dussès D, Evans TA, Roisin Y, Lo N, Bourguignon T. 2019 Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Mol. Phylogenet. Evol. 132, 100-104. (doi: 10. 1016/j. ympev. 2018. 11. 005)
Wang M et al. 2021 Neoisoptera repetitively colonised Madagascar after the Middle Miocene climatic optimum. bioRxiv, 2021. 12. 01. 470872. (doi: 10. 1101/2021. 12. 01. 470872)
Buek A et al. 2022 Molecular phylogeny reveals the past transoceanic voyages of drywood termites (Isoptera, Kalotermitidae). Mol. Biol. Evol. (doi: 10. 1093/molbev/msac093)
Evans TA, Forschler BT, Grace JK. 2013 Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455-474. (doi: 10. 1146/annurev-ento-120811-153554)
Thorne BL et al. 2000 Early fossil history of the termites. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 77-93. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Engel MS, Barden P, Riccio ML, Grimaldi DA. 2016 Morphologically specialized termite castes and advanced sociality in the early Cretaceous. Curr. Biol. 26, 522-530. (doi: 10. 1016/j. cub. 2015. 12. 061)
Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019 Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728-3734. (doi: 10. 1016/j. cub. 2019. 08. 076)
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001 Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. (doi: 10. 1126/science. 1059412)
Rögl F. 1998 Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279-310.
Hu J et al. 2007 Alate dispersal distances of the black-winged subterranean termite Odontotermes formosanus (Isoptera: Termitidae) in southern China. Sociobiology 50, 513-520.
Messenger MT, Mullins AJ. 2005 New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Florida Entomol. 88, 99-100. (doi: 10. 1653/0015-4040(2005)088[0099: NFDRFC]2. 0. CO; 2)
Thiel M et al. 2006 The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr. Mar. Biol. 44, 323-429. (doi: 10. 1201/9781420006391. ch7)
Chiu CI, Mullins AJ, Kuan KC, Lin MD, Su NY, Li HF. 2021 Termite salinity tolerance and potential for transoceanic dispersal through rafting. Ecol. Entomol. 46, 106-116. (doi: 10. 1111/een. 12946)
Emerson AE. 1924 A new termite from the Juan Fernandez Islands. In The natural history of Juan Fernandez and Easter island, vol. 3 (ed. CJF Skottsberg), pp. 392-394. Uppsala, Sweden: Almqvist and Wiksells.
Bahder BW, Scheffrahn RH, Keek J, Keil C, Whitney-King S. 2009 Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Ecuador. Ann. Soc. Entomol. Fr. (N. S.) 45, 529-536. (doi: 10. 1080/00379271. 2009. 10697634)
Abe T. 1984 Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiol. Ecol. Japan 21, 63-88.
Gathorne-Hardy FJ, Jones DT, Mawdsley NA. 2000 The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins. Biol. J. Linn. Soc. 71, 251-267. (doi: 10. 1111/j. 1095-8312. 2000. Tb01257. x)
Grace JK et al. 2002 Distribution and management of termites in Hawaii. Sociobiology 40, 87-93.
Scheffrahn RH, Keek J, Chase JA, Maharajh B, Mangold JR. 2006 Taxonomy, biogeography, and notes on termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands. Ann. Entomol. Soc. Am. 99, 463-486. (doi: 10. 1603/0013-8746(2006)99[463: TBANOT]2. 0. CO; 2)
Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM. 2003 Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J. Biogeogr. 30, 847-877. (doi: 10. 1046/j. 1365-2699. 2003. 00883. x)
Inward DJG, Vogler AP, Eggleton P. 2007 A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44, 953-967. (doi: 10. 1016/j. ympev. 2007. 05. 014)
Davies RG, Hernández LM, Eggleton P, Didham RK, Fagan LL, Winchester NN. 2003 Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19, 509-524. (doi: 10. 1017/S0266467403003560)
Martius C. 1997 The termites. In Ecological studies 126. The central-amazonian floodplain: ecology of a pulsing system (ed. W Junk), pp. 361-371. Berlin, Germany: Springer.
Noirot C et al. 2000 Termite nests: architecture, regulation and defence. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 121-139. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Holt BG et al. 2013 An update of Wallace's zoogeographic regions of the world. Science 339, 74-78. (doi: 10. 1126/science. 1228282)
Pequeno PACL et al. 2021 Can shifts in metabolic scaling predict coevolution between diet quality and body size? Evolution 75, 141-148. (doi: 10. 1111/evo. 14128)
Wu LW, Bourguignon T, Šobotník J, Wen P, Liang WR, Li HF. 2018 Phylogenetic position of the enigmatic termite family Stylotermitidae (Insecta: Blattodea). Invertebr. Syst. 32, 1111-1117. (doi: 10. 1071/IS17093)
Romero Arias J, Boom A, Wang M, Clitheroe C, Šobotník J, Stiblik P, Bourguignon T, Roisin Y. 2021 Molecular phylogeny and historical biogeography of Apicotermitinae (Blattodea: Termitidae). Syst. Entomol. 46, 741-756. (doi: 10. 1111/syen. 12486)
Wang M et al. 2022 Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera) (Isoptera: Teletisoptera). Syst. Entomol. (doi: 10. 1111/syen. 12548)
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017 metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824-834. (doi: 10. 1101/gr. 213959. 116)
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. 2020 MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892-905. (doi: 10. 1111/1755-0998. 13160)
Katoh K, Standley DM. 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (doi: 10. 1093/molbev/mst010)
Rice P, Longden I, Bleasby A. 2000 EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276-277. (doi: 10. 1016/S0168-9525(00)02024-2)
Suyama M, Torrents D, Bork P. 2006 PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. (doi: 10. 1093/nar/gkl315)
Bouckaert R et al. 2019 BEAST 2. 5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. (doi: 10. 1371/journal. pcbi. 1006650)
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015 IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (doi: 10. 1093/molbev/msu300)
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017 ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (doi: 10. 1038/nmeth. 4285)
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006 Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (doi: 10. 1371/journal. pbio. 0040088)
Ho SYW, Phillips MJ. 2009 Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367-380. (doi: 10. 1093/sysbio/syp035)
Rambaut A, Drummond AJ, Xie D, Baele G, Susko E. 2018 Posterior summarization in Bayesian phylogenetics using Tracer 1. 7. Syst. Biol. 67, 901-904. (doi: 10. 1093/sysbio/syy032)
R Core Team. 2020 R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Wang LG et al. 2020 Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599-603. (doi: 10. 1093/molbev/msz240)
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017 GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36. (doi: 10. 1111/2041-210X. 12628)
Parnell AC, Inger R, Bearhop S, Jackson AL. 2010 Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. (doi: 10. 1371/journal. pone. 0009672)
Jackson AL, Inger R, Parnell AC, Bearhop S. 2011 Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595-602. (doi: 10. 1111/j. 1365-2656. 2011. 01806. x)
Keck F, Rimet F, Bouchez A, Franc A. 2016 Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774-2780. (doi: 10. 1002/ece3. 2051)
Revell LJ. 2012 phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. (doi: 10. 1111/j. 2041-210X. 2011. 00169. x)
Uyeda JC, Harmon LJ. 2014 A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902-918. (doi: 10. 1093/sysbio/syu057)
Paradis E, Schwartz R. 2019 ape 5. 0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. (doi: 10. 1093/bioinformatics/bty633)
Pagel M. 1994 Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37-45. (doi: 10. 1098/rspb. 1994. 0006)
Klaus KV, Matzke NJ. 2020 Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 69, 61-75. (doi: 10. 1093/sysbio/syz034)
Matzke NJ. 2013 Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242-248. (doi: 10. 21425/F55419694)
Holm RJ, Spandler C, Richards SW. 2015 Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Res. 28, 1117-1136. (doi: 10. 1016/j. gr. 2014. 09. 011)
Ree RH et al. 2008 Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4-14. (doi: 10. 1080/10635150701883881)
Ronquist F. 1997 Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46, 195-203. (doi: 10. 1093/sysbio/46. 1. 195)
Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013 Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789-804. (doi: 10. 1093/sysbio/syt040)
Scheffrahn RH, Jones SC, Keek J, Chase JA, Mangold JR, Su NY. 2003 Taxonomy, distribution, and notes on the termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Puerto Rico and the U. S. Virgin Islands. Ann. Entomol. Soc. Am. 96, 181-201. (doi: 10. 1603/0013-8746(2003)096[0181: TDANOT]2. 0. CO; 2)
Myles TG. 1999 Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1-91.
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. 2021 Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749-2769. (doi: 10. 1007/s00018-020-03728-z)
Brauman A et al. 2000 Soil-feeding termites: biology, microbial associations and digestive mechanisms. In Termites: evolution, sociality, symbioses, ecology (eds T Abe, DE Bignell, M Higashi), pp. 233-259. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Grassé PP. 1984 Termitologia, vol. 2. Fondation des sociétés-construction. Paris, France: Masson.
Arab DA, Namyatova A, Evans TA, Cameron SL, Yeates DK, Ho SYW, Lo N. 2017 Parallel evolution of mound-building and grass-feeding in Australian nasute termites. Biol. Lett. 13, 20160665. (doi: 10. 1098/rsbl. 2016. 0665)
Sands WA. 1972 The soldierless termites of Africa (Isoptera: Termitidae). Bull. Br. Mus. Nat. Hist. Entomol. 18, 1-244. (doi: 10. 5962/p. 192782)
Polly PD. 2001 Paleontology and the comparative method: ancestral node reconstructions versus observed node values. Am. Nat. 157, 596-609. (doi: 10. 1086/320622)
Webster AJ, Purvis A. 2002 Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proc. R. Soc. B 269, 143-149. (doi: 10. 1098/rspb. 2001. 1873)
DeNiro MJ, Epstein S. 1981 Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341-351. (doi: 10. 1016/0016-7037(81)90244-1)
Eggleton P. 2011 An introduction to termites: biology, taxonomy and functional morphology. In Biology of termites: a modern synthesis (eds DE Bignell, Y Roisin, N Lo), pp. 1-26. Dordrecht, The Netherlands: Springer.
Hellemans S et al. 2022 Termite dispersal is influenced by their diet. FigShare. (doi: 10. 6084/m9. figshare. c. 5975234)
Hellemans S et al. 2022 Data from: Termite dispersal is influenced by their diet. Dryad Digital Repository. (doi: 10. 5061/dryad. 41ns1rngs)
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.