[en] Application of reduced activation ferritic/martensitic (RAFM) steels as the structural material in future fusion reactors requires the knowledge of their mechanical properties under relevant operational conditions i.e. temperatures and irradiation by fast neutrons. Execution of the neutron irradiation and post irradiation examination is expensive and lengthy, therefore experimental and computational solutions to ease the characterization of as-irradiated materials are in the scope of interests of nuclear materials scientific community. Moreover, ion irradiation is considered as one possible way to surrogate high flux neutron irradiation damage. The extraction of the mechanical properties after ion irradiation primarily relies on the nanoindentation techniques and its subsequent post processing to extract engineering relevant information, although some innovative techniques such as compression micropillars and micro-tensile testing also exist. In this work, we have performed nanoindentation on BCC iron, as the basis material for ferritic steels, by using a new Bruker stage developed for high temperature operation. The obtained results were analyzed by means of crystal plasticity finite element method (CPFEM), whereas the constitutive laws of the material were derived and established by using tensile deformation data, thus providing an interconnection of material’s behavior under compressive and tensile deformations. The microstructural features such as indentation pile-up formation or dislocation density evolution were obtained by using transmission and scanning electron microscopy, and were compared with the predictions derived by the developed CPFEM model. It is demonstrated that a good agreement between the CPFEM and experimental data set, including tensile and compressive load
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Materials science & engineering Mechanical engineering Energy
Author, co-author :
Khvan, Tymofii ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
Noels, Ludovic ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Terentyev, Dmitry; SCK CEN - Belgian Nuclear Research Centre [BE]
Dencker, F; Leibniz University Hannover
Stauffer, D; Bruker Inc
Hanger, UD; Bruker Nano GmbH
Van Renterghem, Wouter; SCK CEN - Belgian Nuclear Research Centre [BE]
Cheng, C; SCK CEN - Belgian Nuclear Research Centre [BE]
Zinovev, Aleksandr; SCK CEN - Belgian Nuclear Research Centre [BE]
Language :
English
Title :
High temperature nanoindentation of iron: experimental and computational study
Publication date :
15 August 2022
Journal title :
Journal of Nuclear Materials
ISSN :
0022-3115
eISSN :
1873-4820
Publisher :
Elsevier, Netherlands
Volume :
567
Pages :
153815
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 633053 - EUROfusion - Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium
Name of the research project :
EUROfusion
Funders :
EC - European Commission EU - European Union
Funding number :
101052200
Funding text :
This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.
Commentary :
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Nuclear Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Nuclear Materials 567 (2022) 153815, DOI: 10.1016/j.jnucmat.2022.153815
Zinkle, A., Muroga, H., Mӧslang, S.J., Tanigawa, T., Multimodal options for materials research to advance the basis for fusion energy in the ITER era. Nucl. Fusion., 53, 2013, 104024.
Gaganidze, E., Aktaa, J., Assessment of neutron irradiation effects on RAFM steels. Fusion Eng. Des. 88 (2013), 118–128.
Singh, N., Evans, J.H., Significant differences in defect accumulation behavior between FCC and bcc crystals under cascade damage conditions. J. Nucl. Mater. 226 (1995), 277–285.
Federici, G., Biel, W., Gilbert, M.R., Kemp, R., Taylor, N., Wenninger, R., European DEMO design strategy and consequences for materials. Nucl. Fusion., 57, 2017, 092002.
Prasitthipayong, A., Frazer, D., Kareer, A., Abad, M.D., Garner, A., Joni, B., Ungard, T., Ribarik, G., Preuss, M., Balogh, L., Tumey, S.J., Minora, A.M., Hosemann, P., Micro mechanical testing of candidate structural alloys for Gen-IV nuclear reactors. Nucl. Mater. and Energy 16 (2018), 34–45.
Ruiz-Moreno, A., Hähner, P., Fumagalli, F., Haiblikova, V., Conte, M., Randall, N., Stress−strain curves and derived mechanical parameters of P91 steel from spherical nanoindentation at a range of temperatures. Mater. Des., 194, 2020, 108950.
Hosemann, P., Vieh, C., Greco, R.R., Kabra, S., Valdez, J.A., Cappiello, M.J., Maloy, S.A., Nanoindentation on ion irradiated steels. J. Nucl. Mater. 389 (2009), 239–247.
Saleh, M., Zaidi, Z., Hurt, C., Ionescu, M., Munroe, P., Bhattacharyya, D., Comparative study of two nanoindentation approaches for assessing mechanical properties of ion-irradiated stainless steel 316. Metals, 8, 2018, 719.
Saleh, M., Zaidi, Z., Ionescu, M., Hurt, C., Short, K., Daniels, J., Munroe, P., Edwards, L., Bhattacharyya, D., Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation – experiments and modelling. Int. J. Plast. 86 (2016), 151–169.
Knapp, J.A., Follstaedt, D.M., Myers, S.M., Barbour, J.C., Friedmann, T.A., Finite-element modeling of nanoindentation. J. App. Phys., 85, 1999, 1460-1474.
Knapp, J.A., Follstaedt, D.M., Barbour, J.C., Myers, S.M., Finite-element modeling of nanoindentation for determining the mechanical properties of implanted layers and thin films. NIMB 127-128 (1997), 935–939.
Beake, B.D., Harris, A.J., Moghal, J., Armstrong, D., Temperature dependence of strain rate sensitivity, indentation size effects and pile-up in polycrystalline tungsten from 25 to 950°C. Mater. Des. 156 (2018), 278–286.
Xiao, X., Terentyev, D., Ruiz, A., Zinovev, A., Bakaev, A., Zhurkin, E.E., High temperature nano-indentation of tungsten: modelling and experimental validation. Mat Sci. Eng. A Struct. 743 (2019), 106–113.
Harris, A., Beake, B.D., Armstrong, D., Davies, M.I., Development of high temperature nanoindentation methodology and its application in the nanoindentation of polycrystalline tungsten in vacuum to 950°C. Exp. Mech. 57 (2017), 1115–1126.
Wyszkowska, E., Kurpaska, L., Frelek-Kozak, M., Jozwik, I., Perkowski, K., Jagielski, J., Investigation of the mechanical properties of ODS steels at high temperatures using nanoindentation technique. Nucl. Instrum Meth B 444 (2019), 107–111.
Lee, D.H., Choi, I.C., Yan, G.H., Lu, Z.P., Kawasaki, M., Ramamurty, U., Schwaiger, R., Jang, J., Activation energy for plastic flow in nanocrystalline CoCrFeMnNi high-entropy alloy: a high temperature nanoindentation study. Scr. Mater. 156 (2018), 129–133.
Choi, I.C., Brandl, C., Schwaiger, R., Thermally activated dislocation plasticity in body-centered cubic chromium studied by high-temperature nanoindentation. Acta Mater. 140 (2017), 107–115.
Terentyev, D., Xiao, X., Lemeshko, S., Hangen, U., Zhurkin, E.E., High temperature nanoindentation of tungsten: modelling and experimental validation. Int. J. Refract. Met. Hard Mater., 89, 2020, 105222.
Liu, M., Lu, C., Tieu, A.K., Crystal plasticity finite element method modelling of indentation size effect. Int. J. Solids Struct. 54 (2015), 42–49.
Yao, W.Z., You, J.H., Berkovich nanoindentation study of monocrystalline tungsten: a crystal plasticity study of surface pile-up deformation. Philos. Mag. 97 (2017), 1418–1435.
Liu, M., Tieu, A.K., Peng, C., Zhou, K., Explore the anisotropic indentation pile-up patterns of single-crystal coppers by crystal plasticity finite element modelling. Mater. Lett. 161 (2015), 227–230.
Britton, T.B., Liang, H., Dunne, F.P.E., Wilkinson, A.J., The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations. Proc. R. Soc. 466 (2010), 695–719.
Aoyagi, Y., Sakuma, Indentation test and crystal plasticity analysis on mechanical properties of grain boundary, S., J. Soc. Mater. Sci. 64 (2015), 287–294.
Su, Y., Zambaldi, C., Mercier, D., Eisenlohr, P., Bieler, T.R., Crimp, M.A., Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling. Int. J. Plast. 86 (2016), 170–186.
Xiao, X., Terentyev, D., Bakaev, A., Zinovev, A., Dubinko, A., Zhurkin, E.E., Crystal plasticity finite element method simulation for the nano-indentation of plasma-exposed tungsten. J. Nucl. Mater. 518 (2019), 334–341.
Lin, P., Nie, J., Liu, M., Study on irradiation effect in stress-strain response with CPFEM during nano-indentation. Nucl. Mater. Eng., 22, 2020, 100737.
Nie, J., Lin, P., Liu, Y., Zhang, H., Wang, X., Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM. Nucl. Eng. Technol. 51 (2019), 1970–1977.
Massoud, J.P., Bugat, S., Marini, B., Lidbury, D., Dyck, S.V., PERFECT – prediction of irradiation damage effects on reactor components: a summary. J. Nucl. Mat. 406 (2010), 2–6.
Fazio, C., Briceno, D.G., Rieth, M., Gessi, A., Henry, J., Malerba, L., Innovative materials for Gen IV systems and transmutation facilities: the cross-cutting research project GETMAT. Nucl. Eng. Des. 241 (2011), 3514–3520.
Malerba, L., Caturla, M.J., Gaganidze, E., Kaden, C., Konstantinović, M.J., Olsson, P., Robertson, C., Rodney, D., Ruiz-Moreno, A.M., Serrano, M., Aktaa, J., Anento, N., Austin, S., Bakaev, A., Balbuena, J.P., Bergner, F., Boioli, F., Boleininger, M., Bonny, G., Castin, N., Chapman, J.B.J., Chekhonin, P., Clozel, M., Devincre, B., Dupuy, L., Diego, G., Dudarev, S.L., Fu, C.-C., Gatti, R., Gélébart, L., Gómez-Ferrer, B., Gonçalves, D., Guerrero, C., Gueye, P.M., Hähner, P., Hannula, S.P., Hayat, Q., Hernández-Mayoral, M., Jagielski, J., Jennett, N., Jiménez, F., Kapoor, G., Kraych, A., Khvan, T., Kurpaska, L., Kuronen, A., Kvashin, N., Libera, O., Ma, P.W., Manninen, T., Marinica, M.C., Merino, S., Meslin, E., Mompiou, F., Mota, F., Namburi, H., Ortiz, C.J., Pareige, C., Prester, M., Rajakrishnan, R.R., Sauzay, M., Serra, A., Simonovski, I., Soisson, F., Spätig, P., Tanguy, D., Terentyev, D., Trebala, M., Trochet, M., Ulbricht, A., M.Vallet, K.Vogel, Yalcinkaya, T., Zhao, J., Multiscale modelling for fusion and fission materials: the M4F project. Nucl. Mat. Eng., 29, 2021, 101051.
Terentyev, D., Osetsky, Y.N., Competing processes in reactions between an edge dislocation and dislocation loops in a body-centred cubic metal. Scr. Mater. 62 (2010), 697–700.
Veleva, L., Hähner, P., Dubinko, A., Khvan, T., Terentyev, D., Ruiz-Moreno, A., Depth-sensing hardness measurements to probe hardening behaviour and dynamic strain ageing effects of iron during tensile pre-deformation. Nanomaterials, 11, 2021, 71.
Oliver, W.C., Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), 1564–1583.
Volinsky, A.A., Moody, N.R., Gerberich, Nanoindentation of Au and Pt/Cu thin films at elevated temperatures, W.W., J. Mater. Res. 19 (2004), 2650–2657.
Sakai, H., Tsuji, T., Naito, Effect of oxygen partial pressure on oxidation of iron at 573 K, K., J. Nucl. Sci. Technol. 21:11 (1984), 844–852.
Hour, P.Y., et al. Oxidation of metals and alloys. Richardson, J.A., et al. (eds.) Shreir's Corrosion, 2010, Elsevier, Amsterdam, 195–239 Volume 1.
Ellingham, H.J.T., Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. Lond., 63(5), 1944, 125.
Geuzaine, C., Remacle, J.F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309–1331.
Lemoine, G., Delannay, L., Idrissi, H., Colla, M.S., Pardoen, T., Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films. Acta Mater. 111 (2016), 10–21.
Lin, F.X., Marteleur, M., Jacques, P.J., Delannay, L., Transmission of {332}< 113>twins across grain boundaries in a metastable β-titanium alloy. Int. J. Plast. 105 (2018), 195–210.
U.F. Kocks, A.S. Argon, M.F. Ashby, Thermodynamics and kinetics of slip, Progress in Material Science 19, Pergamon Press, Oxford, 1975.
H.J. Frost, M.F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics, Pergamon Press, Oxford, 1982.
Nabarro, F.R.N., One-dimensional models of thermal activation under shear stress. Philos. Mag. 83 (2003), 3047–3054.
Ono, K., Temperature dependence of dispersed barrier hardening. J. Appl. Phys. 39 (1968), 1803–1806.
Hall, E.O., The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B, 64, 1951, 747.
Mecking, H., Kocks, U.F., Kinetics of flow and strain-hardening. Acta Metall. 29 (1981), 1865–1875.
Kocks, U.F., Realistic constitutive relations for metal plasticity. Mater. Sci. Eng. A 317 (2001), 181–187.
Marin, E.B., Dawson, P.R., On modelling the elasto-viscoplastic response of metals using polycrystal plasticity. Comput. Meth. Appl. Mech. Eng. 165 (1998), 1–21.
Roters, F., Eisenlohr, P., Bieler, T.R., Raabe, D., Crystal Plasticity Finite Element Methods: In Materials Science and Engineering. 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhein.
Xiao, X., Song, D., Xue, J., Chu, H., Duan, H., A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals. J. Mech. Phys. Solids 78 (2015), 1–16.
Terentyev, D., Xiao, X., Dubinko, A., Bakaeva, A., Duan, H., Dislocation-mediated strain hardening in tungsten: thermo-mechanical plasticity theory and experimental validation. J. Mech. Phys. Solids 85 (2015), 1–15.
Taylor, G.I., Plastic strain in metals. J. Inst. Met. 62 (1938), 307–324.
Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., Gerberich, W.W., Yield strength predictions from the plastic zone around nanocontacts. Acta Mater. 47 (1998), 333–343.
Hosemann, P., Kiener, D., Wang, Y., Maloy, S.A., Issues to consider using nano indentation on shallow ion beam irradiated materials. J. Nucl. Mater. 425 (2012), 136–139.
Adams, J.J., Agosta, D.S., Leisure, R.G., Elastic constants of monocrystal iron from 3 to 500K. J. Appl. Phys., 100, 2006, 113530.
Davey, Presicion measurements of the lattice constants of twelve common metals, W.P., Phys. Rev., 25, 1925, 753-761.
Okazaki, K., Solid-solution hardening and softening in binary iron alloys. J. Mater. Sci. 31 (1996), 1087–1099.
Khater, H.A., Monnet, G., Terentyev, D., Serra, A., Dislocation glide in Fe–carbon solid solution: from atomistic to continuum level description. Int. J. of Plast. 62 (2014), 34–49.
Fleck, N.A., Hutchinson, J.W., A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41 (1993), 1825–1857.
ASTM E111-04(2010) Standard test method for Young's modulus, tangent modulus, and chord modulus, ASTM: Metals - Mechanical testing; Elevated and Low-temperature tests; Metallography, 3.01, 2010.
Gaganidze, E., Gillemot, F., Szenthe, I., Gorley, M., Rieth, M., Diegele, E., Development of EUROFER97 database and material property handbook. Fusion Eng. Des. 135 (2018), 9–14.