This is the accepted version of the following article: Calleja Vazquez, J. M., Wu, L., Nguyen, V. D., & Noels, L. (25 May 2022). An Incremental-Secant Mean-Field Homogenization Model Enhanced With a Non-Associated Pressure-Dependent Plasticity Model. International Journal for Numerical Methods in Engineering, 123 (19), 4616-4654. doi:10.1002/nme.7048, which has been published in final form at http://doi.org/10.1002/nme.7048 . This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [http://www.wileyauthors.com/self-archiving].
[en] This paper introduces a, possibly damage-enhanced, pressure-dependent based incremental-secant mean-field homogenization (MFH) scheme for two-phase composites.
The incremental-secant formulation consists on a fictitious unloading of the material up to a stress-free state, in which a residual stress is attained in its phases.
Then the secant method is performed in order to compute the mean stress fields of
each phase. One of the main advantages of this method is the natural isotropicity of
the secant tensors that allows defining the Linear-Comparison-Composite (LCC). In
this work, we show that this isotropic nature is preserved for a non-associated pressure
dependent plastic flow, making possible the direct definition of the LCC. This model is thus able to represent the physics of real polymeric composites. The MFH scheme is then verified by testing its prediction capabilities in several cases, including cyclic and non-proportional loading involving perfectly elastic phases, elasto-plastic and damage-enhanced elasto-plastic phases in random Representative Volume Elements (RVE) of Uni-Directional (UD) composites and of composites reinforced with spherical inclusions.
Calleja Vazquez, Juan Manuel ; Université de Liège - ULiège > Faculté des Sciences Appliquées > Form. doct. sc. ingé. & techno. (aéro. & mécan. - Paysage) ; Université de Liège - ULiège > Faculté des Sciences Appliquées > Doct. sc. ingé. & techno. (aérosp. & méc. - paysage)
Wu, Ling ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M) ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
An Incremental-Secant Mean-Field Homogenization Model Enhanced With a Non-Associated Pressure-Dependent Plasticity Model
Publication date :
25 May 2022
Journal title :
International Journal for Numerical Methods in Engineering
ISSN :
0029-5981
eISSN :
1097-0207
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Commentary :
This is the accepted version of the following article: Calleja Vazquez, J. M., Wu, L., Nguyen, V. D., & Noels, L. (25 May 2022). An Incremental-Secant Mean-Field Homogenization Model Enhanced With a Non-Associated Pressure-Dependent Plasticity Model. International Journal for Numerical Methods in Engineering, 123 (19), 4616-4654. doi:10.1002/nme.7048, which has been published in final form at http://doi.org/10.1002/nme.7048 . This article may be used for non-commercial purposes in accordance with the Wiley Self-Archiving Policy [http://www.wileyauthors.com/self-archiving].
Kanouté P, Boso D, Chaboche J, Schrefler B. Multiscale methods for composites: a review. Arch Comput Methods Eng. 2009;16:31-75.
Geers M, Kouznetsova V, Brekeclmans W. Multi-scale computational homogenization: trends and challenges. J Comp Appl Math. 2010;234:20175-22182.
Llorca J, González C, Molina-Aldareguía J, et al. Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv Mater. 2011;23:5130-5147.
Nemat-Nasser S, Hori M. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier; 2013:37.
Noels L, Wu L, Adam L. Review of homogenization methods for heterogeneous materials. In: Schmitz GJ, Prahl U, eds. Handbook of Software Solutions for ICME. Vol 6.1.1. Wiley-VCH Verlag GmbH & Co. KGaA; 2016:433-441.
Ghosh S, Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. Int J Solids Struct. 1995;32(1):27-62.
Lissenden C, Arnold S. Theoretical and experimental considerations in representing macroscale flow/damage surfaces for metal matrix composites. Int J Plast. 1997;13:327-358.
Wieckowski Z. Dual finite element methods in homogenization for elasticplastic fibrous composite material. Int J Plast. 2000;16:199-221.
Segurado J, Llorca J, González C. On the accuracy of mean field approaches to simulate the plastic deformation of composites. Scr Mater. 2002;46:525-529.
Ju B, Wang T. Plastic constitutive behavior of short-fiber particle reinforced composites. Int J Plast. 2003;19:565-581.
Carrere N, Valle R, Bretheau T, Chaboche J. Multiscale analysis of the transverse properties of TI-based matrix composites reinforced by sic fibres: from the grain scale to the macroscopic scale. Int J Plast. 2004;20:783-810.
Michel J, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng. 1999;172:109-143.
Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci. 1999;16:344-354.
Terada K, Hori M, Kyoya T, Kikuchi N. Simulation of the multi-scale convergence in computational homogenization approaches. Int J Solids Struct. 2000;37:2285-2311.
Kouznetsova V, Brekelmans W, Baaijens F. An approach to micro-macro modeling of heterogeneous materials. Comput Mech. 2001;27(1):37-48.
Kouznetsova V, Geers M, Brekelmans W. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng. 2004;193:5525-5550.
Eshelby J. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc Lond Ser A Math Phys Sci. 1957;241:376-396.
Kröner E. Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkistalls. Z phys A-Hadron Nucl. 1958;151:504-518.
Hill R. Continuum micro-mechanics of elastoplastic polycristals. J Mech Phys Soldis. 1965a;13:89-101.
Hill R. A self-consistent mechanics of composite materials. J Mech Phys Soldis. 1965b;13:213-222.
Maalej Y, Imene El Ghezal M, Doghri I. Elasticity and viscoelasticity of open cellular material: micromechanical approach. In: Haddar M, ed. Design and Modeling of Mechanical Systems. Springer; 2013:531-540.
Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21:571-574.
Hashin Z. The elastic moduli of heterogeneous materials. ASME J Appl Mech. 1962;29:143-150.
Christensen R, Lo K. Solutions for effective shear properties in three phase sphere and cylinder models. Mech Phys Solids. 1979;27:315-330.
Hori M, Nemat-Nasser S. Double-inclusion model and overall moduli of multi-phase composites. Mech of Mech. 1993;14:189-206.
Ponte CP. The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids. 1991;39(1):45-71.
Ponte CP. A new variational principle and its application to nonlinear heterogeneous systems. SIAM J Appl Math. 1992;52:1321-1341.
Lahellec N, Suquet P. On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles. J Mech Phys Solids. 2007;55:1932-1963.
Lahellec N, Suquet P. On the effective behavior of nonlinear inelastic composites: II. A second-order procedure. J Mech Phys Solids. 2007;55:1964-1992.
Miehe C. Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng. 2002;55(11):1285-1322.
Brassart L, Stainier L, Doghri I, Delannay L. A variational formulation for the incremental homogenization of elasto-plastic composites. J Mech Phys Solids. 2011;59:2455-2475.
Brassart L, Stainier L, Doghri I, Delannay L. Homogenization of elasto-(visco) plastic composites based on an incremental variational principle. Int J Plast. 2012;36:86-112.
Boudet J, Auslender F, Bornert M, Lapusta Y. An incremental variational formulation for the prediction of the effective work-hardening behavior and field statistics of elasto-(visco) plastic composites. Int J Solids Struct. 2016;83:90-113.
Lucchetta A, Auslender F, Bornert M, Kondo D. A double incremental variational procedure for elastoplastic composites with combined isotropic and linear kinematic hardening. Int J Solids Struct. 2019;158:243-267.
Lucchetta A, Auslender F, Bornert M, Kondo D. Incremental variational homogenization of elastoplastic composites with isotropic and Armstrong-Frederick type nonlinear kinematic hardening. Int J Solids Struct. 2021;222-223:111000.
Berveiller M, Zaoui A. An extension of the self-consistent scheme to plastically-flowing polycrystals. J Mech Phys Solids. 1978;26:325-344.
Tandom G, Weng G. A theory of particle-reinforced plasticity. J Appl Mech. 1988;55:126-135.
Molinari A, Canova G, Ahzi S. A self consistent approach of the large deformation polycristal viscoplasticity. Acta Metall. 1987;35:2983-2994.
Masson R, Borner M, Suquet P, Zaoui A. An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals. J Mech Phys Solids. 2000;48:1203-1227.
Pierard O, Doghri I. An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites. Int J Plast. 2006a;22:131-157.
Doghri I, Adam L, Bilger N. Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int J Plast. 2010;26:219-238.
Miled B, Doghri I, Brassart L, Delannay L. Micromechanical modeling of coupled viscoelastic-viscoplastic composites based on an incrementally affine formulation. Int J Sol Struct. 2013;50:1755-1769.
Hutchinson J. Elastic-plastic behaviour of polycrystalline metals and composites. Proc Royal Soc Lond A Math Phys Sci. 1970;319:247-272.
Doghri I, Ouaar A. Homogenization of two-phase elasto-plastic composite materials and structures: study of tangent operators, cyclic plasticity and numerical algorithms. Int J Solids Struct. 2003;40:1681-1712.
Mercier S, Kowalczyk-Gajewska K, Czarnota C. Effective behavior of composites with combined kinematic and isotropic hardening based on additive tangent Mori–Tanaka scheme. Compos B Eng. 2019;174:107052.
Chaboche J, Kanouté P, Roos A. On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int J Plast. 2005;21:1409-1434.
Wu L, Noels L, Adam L, Doghri I. An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int J Solids Struct. 2013;50:3843-3860.
Wu L, Noels L, Adam L, Doghri I. A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites. Int J Plast. 2013;51:80-102.
Wu L, Adam L, Doghri I, Noels L. An incremental-secant mean-field homogenization method with second statistical moments for elasto-visco-plastic composite materials. Mech Mater. 2017;114:180-200.
Haddad M, Doghri I, Pierard O. Viscoelastic-viscoplastic polymer composites: development and evaluation of two very dissimilar mean-field homogenization models. Int J Sol Struct. 2022; 236-237:111354.
Pierard O, Llorca J, Segurado J, Doghri I. Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. Int J Plast. 2007;23:1041-1060.
d e Borst R, Sluys L, Mühlhaus H, Pamin J. Fundamental issues in finite element analyses of localization of deformation. Eng Comput. 1993;10:99-121.
Bažant Z, Belytchko T, Chang T. Continuum theory for strain-softening. J Eng Mech. 1984;110:1666-1692.
Zbib H, Aifantis E. A gradient-dependent flow theory of plasticity: application to metal and soil instabilities. Appl Mech Rev-T. 1989;42:S295-S304.
d e Borst R. Simulation of strain localization: a reapprisal of the Cosserat continuum. Eng Comput. 1991;8:317-332.
Peerlings R, d e Borst R, Brekelmans W, Ayyapureddi S. Gradient-enhanced damage for quasi-brittle materials. Int J Numer Methods Eng. 1996;39:3391-3403.
Geers M. Experimental Analysis and Computational Modelling of Damage and Fracture. Ph.D. thesis. University of Technology, Eindhoven (Netherlands); 1997.
Peerlings R, d e Bost R, Brekelmans W, Geers M. Gradient-enhanced damage modelling of concrete fracture. Mech Cohes-Frict Mater. 1998;3:323-342.
Aifantis E. On the role of gradients in the localization of deformation and fracture. Int J Eng Sci. 1992;30:1279-1299.
Svedberg T, Runesson K. A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage. Int J Plast. 1997;13:669-696.
Knockaert R, Doghri I. Nonlocal consitutive models with gradients of internal variables derived from a micro/macro homogenization procedure. Comput Methods Appl Mech Eng. 1999;174:121-136.
Liu X, Hu G. A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. Int J Plast. 2005;21:777-799.
Coenen E, Kouznetsova V, Geers M. Enabling microstructure-based damage and localization analyses and upscaling. Model Simul Mater Sci Eng. 2011a;19:1-15.
Coenen E, Kouznetsova V, Geers M. Novel boundary conditions for strain localization analyses in microstructural volume elements. Int J Numer Methods Eng. 2011b;90:1-21.
Massart T, Peerlings R, Geers M. A dissipation-based control method for the multi-scale modelling of quasi-brittle materials. C R Méca. 2005;333:521-527.
Massart T, Peerlings R, Geers M. An enhanced multi-scale approach for masonry wall computations. Int J Numer Methods Eng. 2007;69:1022-1059.
Nguyen VD, Lani F, Pardoen T, Morelle XP, Noels L. A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int J Solids Struct. 2016;96:192-216.
Nguyen VD, Wu L, Noels L. A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin. Mech Mater. 2019;133:193-213.
Melro A, Camanho P, Andrade Pires FM, Pinho S. Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I – Constitutive modelling. Int J Solids Struct. 2013;50:1897-1905.
Chevalier J, Camanho P, Pardoen T. Multi-scale characterization and modelling of the transverse compression response of unidirectional carbon fiber reinforced epoxy. Comput Struct. 2019; 209:160-176.
Guéry AAC, Cormery F, Shao J, Kondo D. A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial. Int J Solids Struct. 2008;45:1406-1429.
Shen W, Shao J, Kondo D, Gatmiri B. A micro-macro model for clayey rocks with a plastic compressible porous matrix. Int J Plast. 2012;36:64-85.
Kaiser J, Stommel M. Modified mean-field formulations for the improved simulation of short fiber reinforced thermoplastics. Compos Sci Technol. 2014;99:75-81.
Kolling S, Haufe A, Feucht M, Bois PD. SAMP-1: a semi-analytical model for the simulation of polymers. 4. LS-DYNA Anwenderforum; 2005; Bamberg.
Doghri I, Brassart L, Adam L, Gerard J. A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int J Plast. 2011;27:352-371.
Bornert M, Bretheau T, Gilormini P. Homogénéisation des milieux aléatoires: bornes et estimations. Homogénéisation en mécanique des matériaux. 2001;1:133-222.
Krairi A. Multiscale Modeling of the Damage and Failure of Homogeneous and Short-Fiber Reinforced Thermoplastics Under Monotonic and Fatigue Loadings. PhD thesis; 2015.
Wu L, Zhang T, Maillard E, Adam L, Martiny P, Noels L. Per-phase spatial correlated damage models of UD fibre reinforced composites using mean-field homogenisation; applications to notched laminate failure and yarn failure. Comput Struct. 2021;12:257. doi:10.1016/j.compstruc.2021.106650
Al-Rub RA, Tehrani A, Darabi M. Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. Int J Damage Mech. 2015;24:198-244.
Vogler M, Rolfed R, Camanho P. Modeling the inelastic deformation and fracture of polymer composites – Part I: plasticity model. Mech Mater. 2013;59:50-64.
Wu L, Nguyen V, Noels L. An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites. Comput Methods Appl Mech Eng. 2019;348:97-138.
Wu L, Noels L, Adam L, Doghri I. A multiscale mean-field homogenization method for fiber-reinforced composites with gradient-enhanced damage models. Comput Methods Appl Mech Eng. 2012;233-236:164-179.
Nguyen V-D, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci. 2012; 55:390-406.
Verhoosel CV, Remmers JJC, Gutiérrez MA, de Borst R. Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng. 2010;83(8-9):1155-1179. doi:10.1002/nme.2854
Wu L, Chung CN, Major Z, Adam L, Noels L. From SEM images to elastic responses: a stochastic multiscale analysis of UD fiber reinforced composites. Compos Struct. 2018;189:206-227. doi:10.1016/j.compstruct.2018.01.051