[en] BACKGROUND: Wolman disease (WD), the rapidly progressive phenotype of lysosomal acid lipase (LAL) deficiency, presents in neonates with failure to thrive and hepatosplenomegaly, and leads to multi-organ failure and death before 12 months of age. In clinical trials, enzyme replacement therapy (ERT) with sebelipase alfa led to improved survival, growth and biological parameters in WD patients followed up to 5 years. Long-term follow-up and health-related quality of life (HRQoL) evaluation are lacking.
RESULTS: We performed a nationwide, retrospective study of sebelipase alfa in WD patients. Five patients with abolished LAL activity and bi-allelic LIPA mutations were included with a median follow-up of 7 years (1-10). ERT was initiated at a median age of 1 month (0-4). Infusion tolerance was excellent on the long-term with only one patient requiring systematic pre-medication. Cholestyramine, fat-soluble vitamin supplements and a specific diet (high in medium-chain triglycerides and low in long-chain fatty acids) were prescribed. Liver function tests, plasma lipid profiles, fat-soluble vitamin levels and growth parameters improved. Three patients transiently exhibited a neuromyopathic phenotype (footdrop gait, waddling walk or muscle fatigue) but electromyography and muscle strength testing were normal. At last follow-up, all patients were alive with normal growth parameters and a satisfactory HRQoL, no patient had special education needs, and one patient required parenteral nutrition since an acute gastroenteritis.
CONCLUSIONS: Early ERT initiation allowed 100% survival with positive outcomes. Very long-term follow-up and hematopoietic stem cell transplantation while on ERT should be evaluated to strengthen the benefits of sebelipase alfa.
Disciplines :
Pediatrics
Author, co-author :
Demaret, Tanguy ; Université de Liège - ULiège > Faculté de Médecine > Mast. spéc. gén. clin. ; Pediatric Department, Cliniques universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium. tanguy.demaret@ipg.be ; Centre for Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium. tanguy.demaret@ipg.be
Lacaille, Florence ; Gastroenterology-Hepatology-Nutrition Unit, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
Wicker, Camille; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
Arnoux, Jean-Baptiste ; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
Bouchereau, Juliette ; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
Belloche, Claire; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
Gitiaux, Cyril ; Paediatric Neurophysiology Department and Reference Center for Neuromuscular Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
Grevent, David ; Paediatric Radiology Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
Broissand, Christine; Pharmacy Department, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Université de Paris, Paris, France
Adjaoud, Dalila; Pediatric Oncology and Hematology Department, CHU Grenoble Alpes, Grenoble, France
Abi Warde, Marie-Thérèse; Pediatric Neurology Department, CHU de Strasbourg, Strabourg, France
Plantaz, Dominique; Pediatric Oncology and Hematology Department, CHU Grenoble Alpes, Grenoble, France
Bekri, Soumeya ; Metabolic Biochemistry Department, CHU de Rouen, INSERM U1245, Université de Rouen Normandie, Rouen, France
de Lonlay, Pascale ; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France
Brassier, Anaïs; Reference Center for Inherited Metabolic Diseases, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP), Institut Imagine, Université de Paris, 149 Rue de Sèvres, 75015, Paris, France. anais.brassier@aphp.fr
The authors thank Eric Bauchart for the help provided with the data collection. TD acknowledges Prof. Etienne Sokal for the freedom and the?strong support he provided him to learn metabolic disease management during his PhD.
Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman’s disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2(9):670–9. DOI: 10.1016/S2468-1253(17)30052-3
Hoffman EP, Barr ML, Giovanni MA, Murray MF. Lysosomal acid lipase deficiency. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews. Seattle: University of Washington; Updated 2016 Sep 1.
Li F, Zhang H. Lysosomal acid lipase in lipid metabolism and beyond. Arterioscler Thromb Vasc Biol. 2019;39(5):850–6. DOI: 10.1161/ATVBAHA.119.312136
Aslanidis C, Ries S, Fehringer P, Büchler C, Klima H, Schmitz G. Genetic and biochemical evidence that CESD and Wolman disease are distinguished by residual lysosomal acid lipase activity. Genomics. 1996;33(1):85–93. DOI: 10.1006/geno.1996.0162
Pagani F, Pariyarath R, Garcia R, Stuani C, Burlina AB, Ruotolo G, et al. New lysosomal acid lipase gene mutants explain the phenotype of Wolman disease and cholesteryl ester storage disease. J Lipid Res. 1998;39(7):1382–8. DOI: 10.1016/S0022-2275(20)32518-9
Del Angel G, Hutchinson AT, Jain NK, Forbes CD, Reynders J. Large-scale functional LIPA variant characterization to improve birth prevalence estimates of lysosomal acid lipase deficiency. Hum Mutat. 2019;6:66.
Strebinger G, Muller E, Feldman A, Aigner E. Lysosomal acid lipase deficiency—early diagnosis is the key. Hepat Med Evid Res. 2019;11:79–88. DOI: 10.2147/HMER.S201630
Jones SA, Valayannopoulos V, Schneider E, Eckert S, Banikazemi M, Bialer M, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18(5):452–8. DOI: 10.1038/gim.2015.108
Carter A, Brackley SM, Gao J, Mann JP. The global prevalence and genetic spectrum of lysosomal acid lipase deficiency: a rare condition that mimics NAFLD. J Hepatol. 2019;70(1):142–50. DOI: 10.1016/j.jhep.2018.09.028
Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58(6):1230–43. DOI: 10.1016/j.jhep.2013.02.014
Krivit W, Freese D, Chan KW, Kulkarni R. Wolman’s disease: a review of treatment with bone marrow transplantation and considerations for the future. Bone Marrow transplant. 1992;10(Suppl 1):97–101.
Yanir A, Allatif MA, Weintraub M, Stepensky P. Unfavorable outcome of hematopoietic stem cell transplantation in two siblings with Wolman disease due to graft failure and hepatic complications. Mol Genet Metab. 2013;109(2):224–6. DOI: 10.1016/j.ymgme.2013.03.007
Gramatges MM, Dvorak CC, Regula DP, Enns GM, Weinberg K, Agarwal R. Pathological evidence of Wolman’s disease following hematopoietic stem cell transplantation despite correction of lysosomal acid lipase activity. Bone Marrow Transpl. 2009;44(7):449–50. DOI: 10.1038/bmt.2009.57
Krivit W, Peters C, Dusenbery K, Ben-Yoseph Y, Ramsay NK, Wagner JE, et al. Wolman disease successfully treated by bone marrow transplantation. Bone Marrow Transpl. 2000;26(5):567–70. DOI: 10.1038/sj.bmt.1702557
Tolar J, Petryk A, Khan K, Bjoraker KJ, Jessurun J, Dolan M, et al. Long-term metabolic, endocrine, and neuropsychological outcome of hematopoietic cell transplantation for Wolman disease. Bone Marrow Transplant. 2009;43(1):21–7. DOI: 10.1038/bmt.2008.273
Jones SA, Rojas-Caro S, Quinn AG, Friedman M, Marulkar S, Ezgu F, et al. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12(1):25. DOI: 10.1186/s13023-017-0587-3
Vijay S, Brassier A, Ghosh A, Fecarotta S, Abel F, Marulkar S, et al. Long-term survival with sebelipase alfa enzyme replacement therapy in infants with rapidly progressive lysosomal acid lipase deficiency: final results from 2 open-label studies. Orphanet J Rare Dis. 2021;16(1):13. DOI: 10.1186/s13023-020-01577-4
Sempé M, Pédron G, Roy-Pernot MP. Auxologie, méthodes et séquences. Paris: Theraplix; 1979.
Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care. 2001;39(8):800–12. DOI: 10.1097/00005650-200108000-00006
Valles-Ayoub Y, Esfandiarifard S, No D, Sinai P, Khokher Z, Kohan M, et al. Wolman disease (LIPA pG87V) genotype frequency in people of Iranian–Jewish ancestry. Genet Test Mol Biomark. 2011;15(6):395–8. DOI: 10.1089/gtmb.2010.0203
Pagani F, Garcia R, Pariyarath R, Stuani C, Gridelli B, Paone G, et al. Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. Hum Mol Genet. 1996;5(10):1611–7. DOI: 10.1093/hmg/5.10.1611
Lee TM, Welsh M, Benhamed S, Chung WK. Intragenic deletion as a novel type of mutation in Wolman disease. Mol Genet Metab. 2011;104(4):703–5. DOI: 10.1016/j.ymgme.2011.09.006
Sreekantam S, Nicklaus-Wollenteit I, Orr J, Sharif K, Vijay S, McKiernan PJ, et al. Successful long-term outcome of liver transplantation in late-onset lysosomal acid lipase deficiency. Pediatric Transplant. 2016;20(6):851–4. DOI: 10.1111/petr.12748
Tebani A, Sudrié-Arnaud B, Boudabous H, Brassier A, Anty R, Snanoudj S, et al. Large-scale screening of lipase acid deficiency in at risk population. Clin Chim Acta Int J Clin Chem. 2021;519:64–9. DOI: 10.1016/j.cca.2021.04.005
Byrne BJ, Fuller DD, Smith BK, Clement N, Coleman K, Cleaver B, et al. Pompe disease gene therapy: neural manifestations require consideration of CNS directed therapy. Ann Transl Med. 2019;7(13):290. DOI: 10.21037/atm.2019.05.56
National Centre for Pharmacoeconomics (NCPE). (2018, 08/06/2018). Sebelipase alfa (Kanuma®). Retrieved 20/06/2021, 2021, from http://www.ncpe.ie/drugs/sebelipase-alfa-kanuma/.
Health CAfDTi. CADTH Common Drug Reviews. Pharmacoeconomic Review Report: Sebelipase Alfa (Kanuma): (Alexion Pharmaceuticals, Inc): Indication: Indicated for the treatment of infants, children, and adults diagnosed with lysosomal acid lipase (LAL) deficiency. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2018.
Cohen JL, Burfield J, Valdez-Gonzalez K, Samuels A, Stefanatos AK, Yudkoff M, et al. Early diagnosis of infantile-onset lysosomal acid lipase deficiency in the advent of available enzyme replacement therapy. Orphanet J Rare Dis. 2019;14(1):198. DOI: 10.1186/s13023-019-1129-y
Masi S, Chennamaneni N, Turecek F, Scott CR, Gelb MH. Specific substrate for the assay of lysosomal acid lipase. Clin Chem. 2018;64(4):690–6. DOI: 10.1373/clinchem.2017.282251
Gelb MH, Lukacs Z, Ranieri E, Schielen P. Newborn screening for lysosomal storage disorders: methodologies for measurement of enzymatic activities in dried blood spots. Int J Neonatal Screen. 2019;5(1):66.
Reynolds TM. A specific substrate assay for lysosomal acid lipase paves the way to neonatal screening and better identification of patients with potentially treatable genetic disease. J Lab Precis Med. 2018;3:66. DOI: 10.21037/jlpm.2018.08.04