[en] Mild Zellweger spectrum disorder, also described as Infantile Refsum disease, is attributable to mutations in PEX genes. Its clinical course is characterized by progressive hearing and vision loss, and neurodevelopmental regression. Supportive management is currently considered the standard of care, as no treatment has shown clinical benefits. LT was shown to correct levels of circulating toxic metabolites, partly responsible for chronic neurological impairment. Of three patients having undergone LT for mild ZSD, one died after LT, while the other two displayed significant neurodevelopmental improvement on both the long-term (17 years post-LT) and short-term (9 months post-LT) follow-up. We documented a sustained improvement of biochemical functions, with a complete normalization of plasma phytanic, pristanic, and pipecolic acid levels. This was associated with stabilization of hearing and visual functions, and improved neurodevelopmental status, which has enabled the older patient to lead a relatively autonomous lifestyle on the long term. The psychomotor acquisitions have been markedly improved as compared to their affected siblings, who did not undergo LT and exhibited a poor neurological outcome with severe disabilities. We speculate that LT performed before the onset of severe sensorineural defects in mild ZSD enables partial metabolic remission and improved long-term clinical outcomes.
Disciplines :
Pediatrics
Author, co-author :
Demaret, Tanguy ; Université de Liège - ULiège > Faculté de Médecine > Mast. spéc. gén. clin. ; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Varma, Sharat ; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Stephenne, Xavier; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Smets, Françoise; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Scheers, Isabelle; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Wanders, Ronald ; Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, the Netherlands
Van Maldergem, Lionel ; Centre de Génétique Humaine, Centre Hospitalier Régional Universitaire de Besançon, Université de Franche-Comté, Besançon, France
Reding, Raymond; Unité de Chirurgie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Sokal, Etienne ; Service de Gastro-Entérologie et Hépatologie Pédiatrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
Language :
English
Title :
Living-donor liver transplantation for mild Zellweger spectrum disorder: Up to 17 years follow-up.
Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012;1822:1430-1441.
Waterham HR, Ferdinandusse S, Wanders RJ. Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta. 2016;1863:922-933.
Berendse K, Engelen M, Ferdinandusse S, et al. Zellweger spectrum disorders: clinical manifestations in patients surviving into adulthood. J Inherit Metab Dis. 2016;39:93-106.
Braverman NE, Raymond GV, Rizzo WB, et al. Peroxisome biogenesis disorders in the Zellweger spectrum: an overview of current diagnosis, clinical manifestations, and treatment guidelines. Mol Genet Metab. 2016;117:313-321.
Leipnitz G, Amaral AU, Zanatta A, et al. Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sci. 2010;87:275-280.
Van Maldergem L, Moser AB, Vincent MF, et al. Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis. 2005;28:593-600.
Sokal EM, Smets F, Bourgois A, et al. Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation. 2003;76:735-738.
Sokal EM, Sokol R, Cormier V, et al. Liver transplantation in mitochondrial respiratory chain disorders. Eur J Pediatr. 1999;158(Suppl 2):S81-S84.
Najimi M, Defresne F, Sokal EM. Concise review: updated advances and current challenges in cell therapy for inborn liver metabolic defects. Stem Cells Transl Med. 2016;5:1117-1125.
The milestone checklist. Centers for Disease Control and Prevention web site. https://www.cdc.gov/ncbddd/actearly/milestones/. Published February 23, 2015. Updated August 18, 2016. Accessed January 10, 2017.
Berendse K, Engelen M, Linthorst GE, van Trotsenburg AS, Poll-The BT. High prevalence of primary adrenal insufficiency in Zellweger spectrum disorders. Orphanet J Rare Dis. 2014;9:133.
Sa MJ, Rocha JC, Almeida MF, et al. Infantile Refsum disease: influence of dietary treatment on plasma phytanic acid levels. JIMD Rep. 2016;26:53-60.
Wanders RJ, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease. Biochim Biophys Acta. 2011;1811:498-507.
Baldwin EJ, Gibberd FB, Harley C, Sidey MC, Feher MD, Wierzbicki AS. The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry. 2010;81:954-957.
Matsunami M, Shimozawa N, Fukuda A, et al. Living-donor liver transplantation from a heterozygous parent for infantile refsum disease. Pediatrics. 2016;137:e20153102.
Dalazen GR, Terra M, Jacques CE, et al. Pipecolic acid induces oxidative stress in vitro in cerebral cortex of young rats and the protective role of lipoic acid. Metab Brain Dis. 2014;29:175-183.
Busanello EN, Lobato VG, Zanatta A, et al. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats. Cerebellum. 2014;13:751-759.
Leipnitz G, Amaral AU, Fernandes CG, et al. Pristanic acid promotes oxidative stress in brain cortex of young rats: a possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Res. 2011;1382:259-265.
Wanders RJ, Ferdinandusse S, Brites P, Kemp S. Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta. 2010;1801:272-280.
Berendse K, Klouwer FC, Koot BG, et al. Cholic acid therapy in Zellweger spectrum disorders. J Inherit Metab Dis. 2016;39:859-868.
Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta. 2012;1822:1442-1452.
Greenberg CR, Hajra AK, Moser AB. Triple therapy of a patient with a generalized peroxisomal disorder. Am J Hum Genet. 1987;41(Suppl):A64.
Holmes RD, Wilson GN, Hajra A. Oral ether lipid therapy in patients with peroxisomal disorder. Inherited Metab Dis. 1987;10(Suppl.):239-241.
Vandana VP, Bindu PS, Nagappa M, Sinha S, Taly AB. Audiological findings in Infantile Refsum disease. Int J Pediatr Otorhinolaryngol. 2015;79:1366-1369.
Simons J, Nowaczyk M. Phenotypic variability in fraternal twins with PEX1 mutations: Zellweger syndrome with discordant clinical phenotype. MJM. 2013;S5(001):1-3.
Yik WY, Steinberg SJ, Moser AB, Moser HW, Hacia JG. Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum Mutat. 2009;30:E467-E480.
Steinberg S, Chen L, Wei L, et al. The PEX Gene Screen: molecular diagnosis of peroxisome biogenesis disorders in the Zellweger syndrome spectrum. Mol Genet Metab. 2004;83:252-263.
Sokal EM, Stephenne X, Ottolenghi C, et al. Liver engraftment and repopulation by in vitro expanded adult derived human liver stem cells in a child with ornithine carbamoyltransferase deficiency. JIMD Rep. 2014;13:65-72.
Tondreau T, Tulé M, Najimi M, Vincent M-F, Sokal E. Human adult liver progenitor cells (HALPCS) is a promising tool to restore peroxisomal dysfunction as infantile Refsum's disease. J Pediatr Gastroenterol Nutr. 2013;56(Suppl 2):92.