[en] β-Thalassaemia major (β-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing β-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human β-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of β-TM erythroblasts, which may provide a rationale for new targeted therapies of β-TM.
Disciplines :
Hematology
Author, co-author :
Arlet, Jean-Benoît; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Ribeil, Jean-Antoine; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Guillem, Flavia; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Negre, Olivier; Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and
Hazoume, Adonis; 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer
Marcion, Guillaume ; Université de Liège - ULiège > GIGA > GIGA I3 - Hematology ; 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer
Beuzard, Yves; Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and
Dussiot, Michaël; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Moura, Ivan Cruz; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Demarest, Samuel; Centre national de la recherche scientifique (CNRS), unité mixte de recherche
de Beauchêne, Isaure Chauvot; 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche
Belaid-Choucair, Zakia; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Sevin, Margaux; 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer
Maciel, Thiago Trovati; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Auclair, Christian; 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche
Leboulch, Philippe; 1] Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and
Chretien, Stany; Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and
Tchertanov, Luba; 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche
Baudin-Creuza, Véronique; INSERM, unité mixte de recherche 779, Université Paris XI, Le Kremlin-Bicêtre,
Seigneuric, Renaud; University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne
Fontenay, Michaela; 1] Laboratory of Excellence GR-Ex, 75015 Paris, France [2] Institut Cochin,
Garrido, Carmen; 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer
Hermine, Olivier; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Courtois, Geneviève; 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la
Khandros, E. & Weiss, M. J. Protein quality control during erythropoiesis and hemoglobin synthesis. Hematol. Oncol. Clin. North Am. 24, 1071-1088 (2010).
Ginzburg, Y. & Rivella, S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 118, 4321-4330 (2011).
Yuan, J. et al. Accelerated programmed cell death (apoptosis) in erythroid precursors of patients with severe β-thalassemia (Cooley's anemia). Blood 82, 374-377 (1993).
Mathias, L. A. et al. Ineffective erythropoiesis in β-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp. Hematol. 28, 1343-1353 (2000).
Centis, F. et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96, 3624-3629 (2000).
Ribeil, J. A. et al. Ineffective erythropoiesis in β-thalassemia. ScientificWorldJournal 2013, 394295 (2013).
Zermati, Y. et al. Caspase activation is required for terminal erythroid differentiation. J. Exp. Med. 193, 247-254 (2001).
Ribeil, J.-A. et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445, 102-105 (2007).
Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324-332 (2011).
Hu, J. et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121, 3246-3253 (2013).
Kihm, A. J. et al. An abundant erythroid protein that stabilizes free α-haemoglobin. Nature 417, 758-763 (2002).
Frisan, E. et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood 119, 1532-1542 (2012).
De Maria, R. et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature 401, 489-493 (1999).
Dover, G. J. & Boyer, S. H. Fetal hemoglobin-containing cells have the same mean corpuscular hemoglobin as cells without fetal hemoglobin: a reciprocal relationship between gamma- and beta-globin gene expression in normal subjects and in those with high fetal hemoglobin production. Blood 69, 1109-1113 (1987).
Yao, X. et al. Role of STAT3 and GATA-1 interactions in gamma-globin gene expression. Exp. Hematol. 37, 889-900 (2009).
Woon Kim, Y., Kim, S., Geun Kim, C. & Kim, A. The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucleic Acids Res. 39, 6944-6955 (2011).
Zhu, J. et al. Recombinant erythroid Kruppel-like factor fused to GATA1 up-regulates δ- and γ-globin expression in erythroid cells. Blood 117, 3045-3052 (2011).
Sankaran, V. G. & Orkin, S. H. The switch from fetal to adult hemoglobin. Cold Spring Harb. Perspect. Med. 3, a011643 (2013).
Libani, I. V. et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood 112, 875-885 (2008).
Ramos, P. et al. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nature Med. 19, 437-445 (2013).
Dussiot, M. et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nature Med. 20, 398-407 (2014).
Suragani, R. N. V. S. et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood http://dx.doi.org/10.1182/blood-2013-06-511238 (19 June 2014).
De Franceschi, L. et al. K-CL co-transport plays an important role in normal and beta thalassemic erythropoiesis. Haematologica 92, 1319-1326 (2007).
Zermati, Y. et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp. Hematol. 28, 885-894 (2000).
Gabet, A.-S. et al. Caspase-activated ROCK-1 allows erythroblast terminal maturation independently of cytokine-induced Rho signaling. Cell Death Differ. 18, 678-689 (2011).
Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213-232 (2006).
Schallmeiner, E. et al. Sensitive protein detection via triple-binder proximity ligation assays. Nature Methods 4, 135-137 (2007).
Kiger, L. et al. Dynamics of α-Hb chain binding to its chaperone AHSP depends on heme coordination and redox state. Biochim. Biophys. Acta 1840, 277-287 (2014).
Abraham, E. C., Reese, A., Stallings, M. & Huisman, T. H. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaC1 developers. Hemoglobin 1, 27-44 (1976).
Bucci, E. & Fronticelli, C. A new method for the preparation of alpha and beta subunits of human hemoglobin. J. Biol. Chem. 240, 551-552 (1965).
Anson, M. L. & Mirsky, A. E. Protein coagulation andits reversal: the preparation of insoluble globin, soluble globin and heme. J. Gen. Physiol. 13, 469-476 (1930).