[en] Better identification of severe acute graft-versus-host disease (GvHD) may improve the outcome of this life-threatening complication of allogeneic hematopoietic stem cell transplantation. GvHD induces tissue damage and the release of damage-associated molecular pattern (DAMP) molecules. Here, we analyzed GvHD patients (n = 39) to show that serum heat shock protein glycoprotein 96 (Gp96) could be such a DAMP molecule. We demonstrate that serum Gp96 increases in gastrointestinal GvHD patients and its level correlates with disease severity. An increase in Gp96 serum level was also observed in a mouse model of acute GvHD. This model was used to identify complement C3 as a main partner of Gp96 in the serum. Our biolayer interferometry, yeast two-hybrid and in silico modeling data allowed us to determine that Gp96 binds to a complement C3 fragment encompassing amino acids 749-954, a functional complement C3 hot spot important for binding of different regulators. Accordingly, in vitro experiments with purified proteins demonstrate that Gp96 downregulates several complement C3 functions. Finally, experimental induction of GvHD in complement C3-deficient mice confirms the link between Gp96 and complement C3 in the serum and with the severity of the disease.
Disciplines :
Hematology
Author, co-author :
Seignez, Antoine; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France. ; CHU, Dijon, France.
Joly, Anne-Laure; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Chaumonnot, Killian; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Hazoumé, Adonis; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Sanka, Michel; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Marcion, Guillaume ; Université de Liège - ULiège > GIGA > GIGA I3 - Hematology ; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Boudesco, Christophe; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Hammann, Arlette; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Seigneuric, Renaud; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Jégo, Gaetan; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France.
Ducoroy, Patrick; Proteomic platform CLIPP, Université de Bourgogne Franche-Comté, Dijon, France.
Delarue, Patrice; UMR 6303 CNRS Institut Carnot, Université de Bourgogne Franche-Comté, Dijon,
Senet, Patrick; UMR 6303 CNRS Institut Carnot, Université de Bourgogne Franche-Comté, Dijon,
Castilla-Llorente, Cristina; Institute Gustave Roussy, Université Paris-Sud 11, Villejuif, France.
Solary, Eric; Institute Gustave Roussy, Université Paris-Sud 11, Villejuif, France. ; INSERM UMR1009, Institute Gustave Roussy, Villejuif, France.
Durey, Marie-Agnès; Immunology Department, Hôpital Européen Georges Pompidou, Assistance
Rubio, Marie-Thérèse; Service d'Hématologie et Thérapie Cellulaire, Hôpital Saint-Antoine, Assistance ; INSERM UMR 938, Université Pierre et Marie Curie, Paris, France.
Hermine, Olivier; Institut Imagine, UMR 8147, Université Paris Descartes, Sorbonne Paris-Cité, ; Laboratoire d'Excellence des Globules Rouges (GR-ex), Paris, France.
Kohli, Evelyne; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France. ; CHU, Dijon, France.
Garrido, Carmen; INSERM UMR 866, Equipe labellisée, Ligue Nationale contre le Cancer, and ; Université de Bourgogne Franche-Comté, LNC UMR 866, Dijon, France. ; Anticancer Centre Georges-François Leclerc, Dijon, France.
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol. 2015;6:14.
Wingard JR, et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2011;29(16):2230–2239.
Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373(9674):1550–1561.
Ferrara JL, et al. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood. 2011;118(25):6702–6708.
Garrido C, Solary E. A role of HSPs in apoptosis through “protein triage”? Cell Death Differ. 2003;10(6):619–620.
Jarvis M, Marzolini M, Wang XN, Jackson G, Sviland L, Dickinson AM. Heat shock protein 70: correlation of expression with degree of graft-versus-host response and clinical graft-versus-host disease. Transplantation. 2003;76(5):849–853.
Joly AL, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35(22):2842–2851.
Stuehler C, et al. Selective depletion of alloreactive T cells by targeted therapy of heat shock protein 90: a novel strategy for control of graft-versus-host disease. Blood. 2009;114(13):2829–2836.
Tsan MF, Gao B. Heat shock proteins and immune system. J Leukoc Biol. 2009;85(6):905–910.
Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells. 2005;20(2):173–182.
Zhang Y, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125(2):859–869.
Ochayon DE, Mizrahi M, Shahaf G, Baranovski BM, Lewis EC. Human α1-Antitrypsin Binds to Heat-Shock Protein gp96 and Protects from Endogenous gp96-Mediated Injury In vivo. Front Immunol. 2013;4:320.
Pawaria S, Binder RJ. CD91-dependent programming of T-helper cell responses following heat shock protein immunization. Nat Commun. 2011;2:521.
Singh-Jasuja H, et al. The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol. 2000;30(8):2211–2215.
Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ. Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol. 2004;172(10):6087–6092.
Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995;269(5230):1585–1588.
Ricklin D, Lambris JD. Therapeutic control of complement activation at the level of the central component C3. Immunobiology. 2016;221(6):740–746.
Ma Q, et al. Reduced graft-versus-host disease in C3-deficient mice is associated with decreased donor Th1/Th17 differentiation. Biol Blood Marrow Transplant. 2012;18(8):1174–1181.
Huang QQ, et al. Glycoprotein 96 perpetuates the persistent inflammation of rheumatoid arthritis. Arthritis Rheum. 2012;64(11):3638–3648.
Pagetta A, Folda A, Brunati AM, Finotti P. Identification and purification from the plasma of Type 1 diabetic subjects of a proteolytically active Grp94Evidence that Grp94 is entirely responsible for plasma proteolytic activity. Diabetologia. 2003;46(7):996–1006.
Schaiff WT, Hruska KA, McCourt DW, Green M, Schwartz BD. HLA-DR associates with specific stress proteins and is retained in the endoplasmic reticulum in invariant chain negative cells. J Exp Med. 1992;176(3):657–666.
Staron M, et al. Heat-shock protein gp96/grp94 is an essential chaperone for the platelet glycoprotein Ib-IX-V complex. Blood. 2011;117(26):7136–7144.
Ricklin D. Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology. 2012;217(11):1057–1066.
Arlet JB, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514(7521):242–246.
de Thonel A, et al. HSP27 controls GATA-1 protein level during erythroid cell differentiation. Blood. 2010;116(1):85–96.
Ribeil JA, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102–105.
Ricklin D, et al. A molecular insight into complement evasion by the staphylococcal complement inhibitor protein family. J Immunol. 2009;183(4):2565–2574.
Wanderling S, et al. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell. 2007;18(10):3764–3775.
Przepiorka D, et al. Prevention of graft-versus-host disease with anti-CD5 ricin A chain immunotoxin after CD3-depleted HLA-nonidentical marrow transplantation in pediatric leukemia patients. Bone Marrow Transplant. 1995;16(6):737–741.
Pflieger D, et al. Comparative proteomic analysis of extracellular matrix proteins secreted by two types of skin fibroblasts. Proteomics. 2006;6(21):5868–5879.
Dollins DE, Warren JJ, Immormino RM, Gewirth DT. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell. 2007;28(1):41–56.
Janssen BJ, et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature. 2005;437(7058):505–511.
Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput. 2008;4(3):435–447.
Gordon DL, Rice J, Finlay-Jones JJ, McDonald PJ, Hostetter MK. Analysis of C3 deposition and degradation on bacterial surfaces after opsonization. J Infect Dis. 1988;157(4):697–704.