Karyopherins; Receptors, Cytoplasmic and Nuclear; exportin 1 protein; Cell Differentiation; Erythroblasts; Erythropoiesis; Humans; Karyopherins/genetics; Receptors, Cytoplasmic and Nuclear/genetics; beta-Thalassemia/drug therapy/genetics
Abstract :
[en] β-thalassemia major (β-TM) is an inherited hemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of hemoglobin, leading to the accumulation of free a-globin chains that aggregate and cause ineffective erythropoiesis. We have previously demonstrated that terminal erythroid maturation requires a transient activation of caspase-3 and that the chaperone Heat Shock Protein 70 (HSP70) accumulates in the nucleus to protect GATA-1 transcription factor from caspase-3 cleavage. This nuclear accumulation of HSP70 is inhibited in human β-TM erythroblasts due to HSP70 sequestration in the cytoplasm by free a-globin chains, resulting in maturation arrest and apoptosis. Likewise, terminal maturation can be restored by transduction of a nuclear-targeted HSP70 mutant. Here we demonstrate that in normal erythroid progenitors, HSP70 localization is regulated by the exportin-1 (XPO1), and that treatment of β-thalassemic erythroblasts with an XPO1 inhibitor increased the amount of nuclear HSP70, rescued GATA-1 expression and improved terminal differentiation, thus representing a new therapeutic option to ameliorate ineffective erythropoiesis of β-TM.
Disciplines :
Hematology
Author, co-author :
Guillem, Flavia; INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms
Dussiot, Michaël; INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms
Colin, Elia; INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms
Suriyun, Thunwarat; INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms
Arlet, Jean Benoit; INSERM UMR 1163, CNRS ERL 8254, Laboratory of Cellular and Molecular Mechanisms
Goudin, Nicolas; US24, Cell Imaging Platform, Necker Federative Structure of Research
Marcion, Guillaume ; Université de Liège - ULiège > GIGA > GIGA I3 - Hematology ; INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer
Seigneuric, Renaud; INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer
Causse, Sebastien; INSERM, Unité Mixte de Recherche 866, Equipe Labellisée Ligue Contre le Cancer
Zermati Y, Garrido C, Amsellem S, et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med. 2001; 193(2):247-254.
Ribeil J-A, Zermati Y, VandekerckhoveJ, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102-105.
Arlet J-B, Ribeil J-A, Guillem F, et al. HSP70 sequestration by free a-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514(7521):242-246.
Kudo N, Wolff B, Sekimoto T, et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res. 1998;242(2):540-547.
Nishi K, Yoshida M, Fujiwara D, Nishikawa M, Horinouchi S, Beppu T. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem. 1994; 269(9):6320-6324.
Lui K, Huang Y. RanGTPase: a key regulator of nucleocytoplasmic trafficking. Mol Cell Pharmacol. 2009;1(3):148-156.
Hattangadi SM, Martinez-Morilla S, Patterson HC, et al. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood. 2014; 124(12):1931-1940.
Mathias LA, Fisher TC, Zeng L, et al. Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol. 2000;28(12):1343-1353.
Hu J, Liu J, Xue F,et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013; 121(16): 3246-3253.
An X, Schulz VP, Li J, et al. Global transcriptome analyses of human and murine terminal erythroid differentiation. Blood. 2014;1 23(22):3466-3477.
Gautier E-F, Ducamp S, Leduc M, et al. Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep. 2016; 16(5):1470-1484.
Fukuda M, Asano S, Nakamura T, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 1997;390(6657):308-311.
Xu D, Farmer A, Chook YM. Recognition of nuclear targeting signals by Karyopherin-β proteins. Curr Opin Struct Biol. 2010; 20(6):782-790.
Pinello L, Xu J, Orkin SH, Yuan G-C. Analysis of chromatin-state plasticity identifies cell-type-specific regulators of H3K27me3 patterns. Proc Natl Acad Sci U S A. 2014;111(3):344-353.
Etchin J, Sun Q, Kentsis A, et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia. 2013;27(1):66-74.
Lapalombella R, Sun Q, Williams K, et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood. 2012; 120(23): 4621-4634.
Etchin J, Sanda T, Mansour MR, et al. KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia. Br J Haematol. 2013;161(1):117-127.
Kojima K, Kornblau SM, Ruvolo V, et al. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013; 121(20):4166-4174.
Walker CJ, Oaks JJ, Santhanam R, et al. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood. 2013;122(17):3034-3044.
Wettersten HI, Landesman Y, Friedlander S, Shacham S, Kauffman M, Weiss RH. Specific inhibition of the nuclear exporter exportin-1 attenuates kidney cancer growth. PloS One. 2014;9(12):1-15.
Ranganathan P, Yu X, Na C, et al. Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood. 2012;120(9):1765-1773.
Gravina GL, Mancini A, Sanita P, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941-960.
Tai Y-T, Landesman Y, Acharya C, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28(1):155-165.
Zeng X-C, Bhasin S, Wu X, et al. Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J Cell Sci. 2004;117(Pt 21):4991-5000.
Frisan E, Vandekerckhove J, de Thonel A, et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood. 2012;119(6): 1532-1542.
Gastou M, Rio S, Dussiot M, et al. The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv. 2017;1(22):1959-1976.