[en] The presence of an inactivating heat shock protein 110 (HSP110) mutation in colorectal cancers has been correlated with an excellent prognosis and with the ability of HSP110 to favor the formation of tolerogenic (M2-like) macrophages. These clinical and experimental results suggest a potentially powerful new strategy against colorectal cancer: the inhibition of HSP110. In this work, as an alternative to neutralizing antibodies, Nanofitins (scaffold ~7 kDa proteins) targeting HSP110 were isolated from the screening of a synthetic Nanofitin library, and their capacity to bind (immunoprecipitation, biolayer interferometry) and to inhibit HSP110 was analyzed in vitro and in vivo. Three Nanofitins were found to inhibit HSP110 chaperone activity. Interestingly, they share a high degree of homology in their variable domain and target the peptide-binding domain of HSP110. In vitro, they inhibited the ability of HSP110 to favor M2-like macrophages. The Nanofitin with the highest affinity, A-C2, was studied in the CT26 colorectal cancer mice model. Our PET/scan experiments demonstrate that A-C2 may be localized within the tumor area, in accordance with the reported HSP110 abundance in the tumor microenvironment. A-C2 treatment reduced tumor growth and was associated with an increase in immune cells infiltrating the tumor and particularly cytotoxic macrophages. These results were confirmed in a chicken chorioallantoic membrane tumor model. Finally, we showed the complementarity between A-C2 and an anti-PD-L1 strategy in the in vivo and in ovo tumor models. Overall, Nanofitins appear to be promising new immunotherapeutic lead compounds.
Disciplines :
Oncology
Author, co-author :
Marcion, Guillaume ; Université de Liège - ULiège > Integrative Biological Sciences (InBioS) ; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Hermetet, François ; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Neiers, Fabrice; Université Bourgogne Franche-Comté, Dijon, France. ; Centre des Sciences du Goût et de l'Alimentation, INRA, Dijon, France.
Uyanik, Burhan; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Dondaine, Lucile; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Dias, Alexandre M M; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Da Costa, Laurène; Université Bourgogne Franche-Comté, Dijon, France. ; ICMUB UMR 6302, Dijon, France. ; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Moreau, Mathieu; Université Bourgogne Franche-Comté, Dijon, France. ; ICMUB UMR 6302, Dijon, France. ; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Bellaye, Pierre-Simon; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Collin, Bertrand; ICMUB UMR 6302, Dijon, France. ; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Gobbo, Jessica; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France. ; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Briand, Loïc; Université Bourgogne Franche-Comté, Dijon, France. ; Centre des Sciences du Goût et de l'Alimentation, INRA, Dijon, France.
Seigneuric, Renaud; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France.
Kitten, Olivier; Affilogic SAS, Nantes, France.
Cinier, Mathieu; Affilogic SAS, Nantes, France.
Garrido, Carmen; INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, Dijon, ; Université Bourgogne Franche-Comté, Dijon, France. ; Anticancer Center Georges François Leclerc, Dijon, 21000, France.
Oh HJ, Easton D, Murawski M, Kaneko Y, Subjeck JR. The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. J Biol Chem. 1999;274:15712-15718.
Bracher A, Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci. 2015;2:10.
Slaby O, Sobkova K, Svoboda M, et al. Significant overexpression of Hsp110 gene during colorectal cancer progression. Oncol Rep. 2009;21:1235-1241.
Dorard C, de Thonel A, Collura A, et al. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med. 2011;17:1283-1289.
Kimura A, Ogata K, Altan B, et al. Nuclear heat shock protein 110 expression is associated with poor prognosis and hyperthermo-chemotherapy resistance in gastric cancer patients with peritoneal metastasis. World J Gastroenterol. 2017;23:7541-7550.
Collura A, Lagrange A, Svrcek M, et al. Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil-based chemotherapy. Gastroenterology. 2014;146:401-11 e1.
Berthenet K, Bokhari A, Lagrange A, et al. HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene. 2017;36:2328-2336.
Yu N, Kakunda M, Pham V, et al. HSP105 recruits protein phosphatase 2A to dephosphorylate β-catenin. Mol Cell Biol. 2015;35:1390-1400.
Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun. 2010;2:238-247.
Seigneuric R, Mjahed H, Gobbo J, et al. Heat shock proteins as danger signals for cancer detection. Front Oncol. 2011;1:37.
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120:457-471.
Banerjee S, Lin CF, Skinner KA, et al. Heat shock protein 27 differentiates tolerogenic macrophages that may support human breast cancer progression. Cancer Res. 2011;71:318-327.
Shen Y, Guo D, Weng L, et al. Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. Onco Targets Ther. 2017;6:e1362527.
Berthenet K, Boudesco C, Collura A, et al. Extracellular HSP110 skews macrophage polarization in colorectal cancer. Onco Targets Ther. 2016;5:e1170264.
Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889-896.
Workman P. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett. 2004;206:149-157.
Jego G, Hazoume A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332:275-285.
Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761-772.
Lacaná E, Amur S, Mummanneni P, Zhao H, Frueh FW. The emerging role of pharmacogenomics in biologics. Clin Pharmacol Ther. 2007;82:466-471.
Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer. 2006;6:714-727.
Huet S, Gorre H, Perrocheau A, Picot J, Cinier M. Use of the Nanofitin alternative scaffold as a GFP-ready fusion tag. PLoS One. 2015;10:e0142304.
Goux M, Becker G, Gorré H, et al. Nanofitin as a new molecular-imaging agent for the diagnosis of epidermal growth factor receptor over-expressing tumors. Bioconjug Chem. 2017;28:2361-2371.
Mouratou B, Schaeffer F, Guilvout I, et al. Remodeling a DNA-binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc Natl Acad Sci U S A. 2007;104:17983-17988.
Mouratou B, Béhar G, Paillard-Laurance L, Colinet S, Pecorari F. Ribosome display for the selection of Sac7d scaffolds. Methods Mol Biol. 2012;805:315-331.
Gozzi GJ, Gonzalez D, Boudesco C, et al. Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy. Cell Death Differ. 2019;27:117-129.
Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514:242-246.
Gobbo J, Marcion G, Cordonnier M, et al. Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst. 2016;108:djv330.
Marcion G, Seigneuric R, Chavanne E, et al. C-terminal amino acids are essential for human heat shock protein 70 dimerization. Cell Stress Chaperones. 2015;20:61-72.
Dammicco S, Goux M, Lemaire C, et al. Regiospecific radiolabelling of Nanofitin on Ni magnetic beads with. Nucl Med Biol. 2017;51:33-39.
Komatsu A, Higashi Y, Matsumoto K. Various CAM tumor models. Enzyme. 2019;46:37-57.
Wettstein G, Bellaye PS, Kolb M, et al. Inhibition of HSP27 blocks fibrosis development and EMT features by promoting snail degradation. FASEB J. 2013;27:1549-1560.
Yuno A, Lee MJ, Lee S, et al. Clinical evaluation and biomarker profiling of Hsp90 inhibitors. Methods Mol Biol. 2018;1709:423-441.
Causse SZ, Marcion G, Chanteloup G, et al. HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells. Oncogene. 2019;38:2767-2777.
Liu Q, Hendrickson WA. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell. 2007;131:106-120.
Wang XY, Kazim L, Repasky EA, Subjeck JR. Characterization of heat shock protein 110 and glucose-regulated protein 170 as cancer vaccines and the effect of fever-range hyperthermia on vaccine activity. J Immunol. 2001;166:490-497.
Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563-567.