[en] BACKGROUND: Exosomes, via heat shock protein 70 (HSP70) expressed in their membrane, are able to interact with the toll-like receptor 2 (TLR2) on myeloid-derived suppressive cells (MDSCs), thereby activating them. METHODS: We analyzed exosomes from mouse (C57Bl/6) and breast, lung, and ovarian cancer patient samples and cultured cancer cells with different approaches, including nanoparticle tracking analysis, biolayer interferometry, FACS, and electron microscopy. Data were analyzed with the Student's t and Mann-Whitney tests. All statistical tests were two-sided. RESULTS: We showed that the A8 peptide aptamer binds to the extracellular domain of membrane HSP70 and used the aptamer to capture HSP70 exosomes from cancer patient samples. The number of HSP70 exosomes was higher in cancer patients than in healthy donors (mean, ng/mL ± SD = 3.5 ± 1.7 vs 0.17 ± 0.11, respectively, P = .004). Accordingly, all cancer cell lines examined abundantly released HSP70 exosomes, whereas "normal" cells did not. HSP70 had higher affinity for A8 than for TLR2; thus, A8 blocked HSP70/TLR2 association and the ability of tumor-derived exosomes to activate MDSCs. Treatment of tumor-bearing C57Bl/6 mice with A8 induced a decrease in the number of MDSCs in the spleen and inhibited tumor progression (n = 6 mice per group). Chemotherapeutic agents such as cisplatin or 5FU increase the amount of HSP70 exosomes, favoring the activation of MDSCs and hampering the development of an antitumor immune response. In contrast, this MDSC activation was not observed if cisplatin or 5FU was combined with A8. As a result, the antitumor effect of the drugs was strongly potentiated. CONCLUSIONS: A8 might be useful for quantifying tumor-derived exosomes and for cancer therapy through MDSC inhibition.
Disciplines :
Oncology
Author, co-author :
Gobbo, Jessica; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Marcion, Guillaume ; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Cordonnier, Marine; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Dias, Alexandre M M; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Pernet, Nicolas; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Hammann, Arlette; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Richaud, Sarah; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Mjahed, Hajare; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Isambert, Nicolas; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Clausse, Victor; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Rébé, Cédric; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Bertaut, Aurélie; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Goussot, Vincent; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Lirussi, Frédéric; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Ghiringhelli, François; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
de Thonel, Aurélie; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Fumoleau, Pierre; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Seigneuric, Renaud; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Garrido, Carmen; Affiliations of authors:INSERM, UMR 866, Laboratoire d'Excellence LipSTIC , Dijon
Liu Y, Wang L, Predina J, et al. Inhibition of p300 impairs Foxp3+ T regulatory cell function and promotes antitumor immunity. Nat Med. 2013;19(9):1173-1177.
Chhabra A, Mukherji B. Death Receptor-Independent Activation-Induced Cell Death in Human Melanoma Antigen-Specific MHC Class I-Restricted TCR-Engineered CD4 T Cells. J Immunol. 2013;191(6):3471-3477.
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology. 2013;218(11):1402-1410.
Khaled YS, Ammori BJ, Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol. 2013;91(8):493-502.
Nagaraj S, Collazo M, Corzo CA, et al. Regulatory myeloid suppressor cells in health and disease. Cancer Res. 2009;69(19):7503-7506.
Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol. 2006;16(1):53-65.
Serafini P, De Santo C, Marigo I, et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother. 2004;53(2):64-72.
Bobrie A, Théry C. Exosomes and communication between tumours and the immune system: are all exosomes equal? Biochem Soc Trans. 2013;41(1):263-267.
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19-30; sup pp 1-13.
McLellan AD. Exosome release by primary B cells. Crit Rev Immunol. 2009;29(3):203-217.
Knight AM. Regulated release of B cell-derived exosomes: do differences in exosome release provide insight into different APC function for B cells and DC? Eur J Immunol. 2008;38(5):1186-1189.
Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581-593.
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659.
Peinado H, Ale?kovi? M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883-891.
Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659-1668.
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. 2010;120(2):457-471.
Balaburski GM, Leu JI-J, Beeharry N, et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol Cancer Res. 2013;11(3):219-229.
Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med. 2008;12(3):743-761.
Jego G, Hazoumé A, Seigneuric R, Garrido C. Targeting heat shock proteins in cancer. Cancer Lett. 2013;332(2):275-285.
Multhoff G. Heat shock protein 70 (Hsp70): Membrane location, export and immunological relevance. Methods. 2007;43:229-237.
Stangl S, Gehrmann M, Riegger J, et al. Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A. 2011;108(2):733-738.
Rérole A-L, Gobbo J, De Thonel A, et al. Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res. 2011;71(2):484-495.
Baines IC, Colas P. Peptide aptamers as guides for small-molecule drug discovery. Drug Discov Today. 2006;11(7-8):334-341.
Seigneuric R, Gobbo J, Colas P, Garrido C. Targeting cancer with peptide aptamers. Oncotarget. 2011;2(7):557-561.
Stangl S, Themelis G, Friedrich L, et al. Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment. Radiother Oncol. 2011;99(3):313-316.
Kapanadze T, Gamrekelashvili J, Ma C, et al. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol. 2013;59(5):1007-1013.
Xiang X, Liu Y, Zhuang X, et al. TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol. 2010;177(4):1606-1610.
Chang Q, Bournazou E, Sansone P, et al. The IL-6/JAK/Stat3 Feed-Forward Loop Drives Tumorigenesis. Neoplasia. 2013;15(7):848-862.
Kusmartsev S, Cheng F, Yu B, et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 2003;63(15):4441-4449.
Hanahan D, Weinberg RA, Francisco S. The Hallmarks of Cancer Review University of California at San Francisco. Cell. 2000;100:57-70.
Rébé C, Végran F, Berger H, Ghiringhelli F. A key factor in tumor immunoescape. JAK-STAT 2013;2(1):e23010.
Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Crosstalk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 2007;179(2):977-983.
Coles DJ, Rolfe BE, Boase NRB, Veedu RN, Thurecht KJ. Aptamer-targeted hyperbranched polymers: towards greater specificity for tumours in vivo. Chem Commun (Camb). 2013;49(37):3836-3838.