Optimisation of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode
[en] Investigations were carried out to determine the effect of the pH, the nitrogen source, iron
and the dilution rate (h 1) on fermentative hydrogen production from glucose by the newly
isolated strain Citrobacter freundii CWBI952. The hydrogen production rate (HPR), hydrogen
yield, biomass and soluble metabolites were monitored at 30 C in 100 mL serum bottles
and in a 2.3 L bioreactor operated in batch, sequenced-batch and semicontinuous mode.
The results indicate that hydrogen production activity, formate biosynthesis and glucose
intake rates are very sensitive to the culture pH, and that additional formate bioconversion
and production of hydrogen with lower biomass yields can be obtained at pH 5.9. In
a further series of cultures casein peptone was replaced by (NH4)2SO4, a low cost alternative
nitrogen source. The ammonia-based substitute was found to be suitable for H2
production when a concentration of 0.045 g/L FeSO4 was provided. Optimal overall
performances (ca. an HPR of 33.2 mL H2/L h and a yield of 0:83 molH2 =molglucose) were
obtained in the semicontinuous culture applying the previously optimized parameters for
pH, nitrogen, and iron with a dilution rate of 0.012 h 1 and degassing of biogas by N2 at
a 28 mL/min flow rate.
Research Center/Unit :
Centre Wallon de Biologie Industrielle CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Microbiology Biotechnology
Author, co-author :
Hamilton, Christopher ✱; Université de Liège - ULiège > Centre Wallon de biologie industrielle
Hiligsmann, Serge ✱; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Beckers, Laurent ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Masset, Julien ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Wilmotte, Annick ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie et génétique bactériennes
Thonart, Philippe ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
✱ These authors have contributed equally to this work.
Language :
English
Title :
Optimisation of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode
Micro-H2 : Production microbiologique d’hydrogène : Etude des processus microalgal et bacterien
Funders :
Action de Recherches concertées ARC 07/12 04- ULg- Communauté française FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Lens P., Westermann P., Haberbauer M., and Moreno A. Biofuels for fuel cells. Integrated environmental technology series (2005), IWA Publishing, London
Balat M. Possible methods for hydrogen production. Energy Sources Part A-Recovery Utilization and Environmental Effects 31 (2009) 39-50
Moriarty P., and Honnery D. Hydrogen's role in an uncertain energy future. Int J Hydrogen Energy 34 (2009) 31-39
Holladay J.D., Hu J., King D.L., and Wang Y. An overview of hydrogen production technologies. Catal Today 139 (2009) 244-260
Winkler M., Maeurer C., Hemschemeier A., Happe T., Jun M., Yasuo I., et al. The isolation of green algal strains with outstanding H2-productivity. Biohydrogen III (2004), Elsevier Science, Amsterdam p. 103-15
Rocha J.S., Barbosa M.J., Wijffels R.H., Jun M., Tadashi M., and Anthony San P. Hydrogen production by photosynthetic bacteria: culture media, yields and efficiencies. Biohydrogen II (2001), Pergamon, Oxford 3-32
Das D., and Veziroglu T.N. Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26 (2001) 13-28
Meher Kotay S., and Das D. Biohydrogen as a renewable energy resource, prospects and potentials. Int J Hydrogen Energy 33 (2008) 258-263
Das D. Advances in biohydrogen production processes: An approach towards commercialization. Int J Hydrogen Energy 34 (2009) 7349-7357
Das D., and Veziroglu T.N. Advances in biological hydrogen production processes. Int J Hydrogen Energy 33 (2008) 6046-6057
Oh S., and Logan B.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res 39 (2005) 4673-4682
Cervantes F., Pavlostathis S., and Van Haandel A. Advanced biological treatment processes for industrial wastewaters. Intergrated environmental technology series vol. 345 (2006), IWA Publishing, London
Oh Y.K., Kim H.J., Park S., Kim M., and Ryu D.D.Y. Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Int J Hydrogen Energy 33 (2008) 1471-1482
Kim S., Seol E., Raj S.M., Park S., Oh Y.K., and Ryu D.D.Y. Various hydrogenases and formate-dependent hydrogen production in Citrobacter amalonaticus Y19. Int J Hydrogen Energy 33 (2008) 1509-1515
Bisaillon A., Turcot J., and Hallenbeck P.C. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31 (2006) 1504-1508
Nath K., Kumar A., and Das D. Effect of some environmental parameters on fermentative hydrogen production by Enterobacter cloacae DM11. Can J Microbiol 52 (2006) 525-532
Tang G.L., Huang J., Sun Z.J., Tang Q.Q., Yan C.H., and Liu G.Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106 (2008) 80-87
Wang J., and Wan W. Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33 (2008) 5392-5397
Masset J, Hiligsmann S, Hamilton C, Beckers L. Franck F, Thonart P. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int J Hydrogen Energy [Submitted for publication].
Wang B., Wan W., and Wang J. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour Technol 100 (2009) 1211-1213
Lin C.Y., and Lay C.H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 29 (2004) 41-45
Yang H., and Shen J. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrogen Energy 31 (2006) 2137-2146
Lee D.Y., Li Y.Y., Oh Y.K., Kim M.S., and Noike T. Effect of iron concentration on continuous H2 production using membrane bioreactor. Int J Hydrogen Energy 34 (2009) 1244-1252
Arooj M.F., Han S.K., Kim S.H., Kim D.H., and Shin H.S. Effect of HRT on ASBR converting starch into biological hydrogen. Int J Hydrogen Energy 33 (2008) 6509-6514
Fan K.S., Kan N.R., and Lay J.J. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97 (2006) 84-89
Yokoi H., Tokushige T., Hirose J., Hayashi S., and Takasaki Y. H-2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20 (1998) 143-147
Yuan Z.L., Yang H.J., Zhi X.H., and Shen J.Q. Enhancement effect of l-cysteine on dark fermentative hydrogen production. Int J Hydrogen Energy 33 (2008) 6535-6540
Postgate J.R. The sulfate-reducing bacteria (1984), Cambridge University Press, London
Hiligsmann S., Jacques P., and Thonart P. Isolation of highly performant sulfate reducers from sulfate-rich environments. Biodegradation 9 (1998) 285-292
Ueno Y., Kawai T., Sato S., Otsuka S., and Morimoto M. Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79 (1995) 395-397
Lin P.Y., Whang L.M., Wu Y.R., Ren W.J., Hsiao C.J., Li S.L., et al. Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrogen Energy 32 (2007) 1728-1735
Bergey's, 1984. Bergey's manual of systematic bacteriology. London. p. 458-61.
Ying Z., and Yang S.T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. J Biotechnol 110 (2004) 143-157
Dabrock B., Bahl H., and Gottschalk G. Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 58 (1992) 1233-1239
Yokoi H., Ohkawara T., Hirose J., Hayashi S., and Takasaki Y. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. J Ferment Bioeng 80 (1995) 571-574
Oh Y.K., Seol E.H., Kim J.R., and Park S. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp Y19. Int J Hydrogen Energy 28 (2003) 1353-1359
Tanisho S., Kamiya N., and Wakao N. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochim Biophys 973 (1989) 1-6
Tanisho S., Kuromoto M., and Kadokura N. Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23 (1998) 559-563
Matsumoto M., and Nishimura Y. Hydrogen production by fermentation using acetic acid and lactic acid. J Biosci Bioeng 103 (2007) 236-241
Yoshida A., Nishimura T., Kawaguchi H., Inui M., and Yukawa H. Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73 (2006) 67-72
Wang X.Y., Jin B., and Mulcahy D. Impact of carbon and nitrogen sources on hydrogen production by a newly isolated Clostridium butyricum W5. Int J Hydrogen Energy 33 (2008) 4998-5005
Yang H.J., and Shen J.Q. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrogen Energy 31 (2006) 2137-2146
Wang J.L., and Wan W. Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy 33 (2008) 1215-1220
Chen Y., Cheng J.J., and Creamer K.S. Inhibition of anaerobic digestion process: a review. Bioresour Technol 99 (2008) 4044-4064 45
Kraemer J.T., and Bagley D.M. Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors. Int J Hydrogen Energy 33 (2008) 6558-6565
Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., and Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73 (2000) 59-65
Zhang Z.P., Show K.Y., Tay J.H., Liang D.T., Lee D.J., and Jiang W.J. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41 (2006) 2118-2123
Garrigues C., Goupil-Feuillerat N., Cocaign-Bousquet M., Renault P., Lindley N.D., and Loubière P. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Metab Eng 3 (2001) 211-217
Mercade M., Cocaign-Bousquet M., Lindley N.D., Loubière P., Stanislaw Bielecki J.T., and Jacek P. Regulation of glycolysis of Lactococcus lactis ssp. cremoris MG 1363 at acidic culture conditions. Prog Biotechnol (2000), Elsevier p. 269-73