Article (Scientific journals)
Phenogrouping Diastolic Dysfunction by Artificial Intelligence: Learning From What We Teach the Machines.
Vannan, Mani A; Argulian, Edgar; LANCELLOTTI, Patrizio
2021In JACC. Cardiovascular Imaging, 14 (10), p. 1901-1903
Peer Reviewed verified by ORBi
 

Files


Full Text
DD Phenogrouping Diastolic Dysfunction by Artificial Intelligence Editorial Final2.pdf
Author postprint (1.18 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Algorithms; Artificial Intelligence; Cardiomyopathies; Humans; Machine Learning; Predictive Value of Tests; HFpEF; artificial intelligence machine-learning; diastolic dysfunction
Disciplines :
Cardiovascular & respiratory systems
Author, co-author :
Vannan, Mani A;  Marcus Heart Valve Center, Piedmont Heart Institute, Atlanta, Georgia, USA.
Argulian, Edgar;  Mount Sinai Morningside Heart, Mount Sinai Heart, New York, New York, USA.
LANCELLOTTI, Patrizio  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de cardiologie
Language :
English
Title :
Phenogrouping Diastolic Dysfunction by Artificial Intelligence: Learning From What We Teach the Machines.
Publication date :
October 2021
Journal title :
JACC. Cardiovascular Imaging
ISSN :
1936-878X
eISSN :
1876-7591
Publisher :
Elsevier, Nl
Volume :
14
Issue :
10
Pages :
1901-1903
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 24 May 2022

Statistics


Number of views
179 (0 by ULiège)
Number of downloads
215 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBi