[en] In 28% of melanomas, NRAS is mutated in one of two hotspots: G12 or Q61. Phosphoproteomic analysis of primary human melanocytes transduced with G12 and Q61 showed different phosphorylation events in the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Surprisingly, NRAS(G12) modulates the PI3K pathway and overexpresses the kinase PIM2, whereas NRAS(Q61) is associated with the MAPK pathway and overexpression of CK2α.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Grill, Christine ; Université de Liège - ULiège > GIGA > GIGA Stem Cells - Cancer Signaling ; Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U1021, Normal and Pathological Development of Melanocytes, Orsay, France, Université Paris-Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique Unité Mixte de Recherche 3347, Orsay, France, Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Larue, Lionel; Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U1021, Normal and Pathological Development of Melanocytes, Orsay, France, Université Paris-Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique Unité Mixte de Recherche 3347, Orsay, France, Equipe Labellisée Ligue Contre le Cancer, Orsay, France. Electronic address: lionel.larue@curie.fr
Language :
English
Title :
NRAS, NRAS, Which Mutation Is Fairest of Them All?
Berger, M.F., Hodis, E., Heffernan, T.P., Deribe, Y.L., Lawrence, M.S., Protopopov, A., et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485 (2012), 502–506.
de Graauw, M., Hensbergen, P., van de Water, B., Phospho-proteomic analysis of cellular signaling. Electrophoresis 27 (2006), 2676–2686.
Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2 (2012), 401–404.
Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 6, 2013, pl1.
Hodis, E., Watson, I.R., Kryukov, G.V., Arold, S.T., Imielinski, M., Theurillat, J.P., et al. A landscape of driver mutations in melanoma. Cell 150 (2012), 251–263.
Jaiswal, B.S., Janakiraman, V., Kljavin, N.M., Eastham-Anderson, J., Cupp, J.E., Liang, Y., et al. Combined targeting of BRAF and CRAF or BRAF and PI3K effector pathways is required for efficacy in NRAS mutant tumors. PLoS One, 4, 2009, e5717.
Krauthammer, M., Kong, Y., Ha, B.H., Evans, P., Bacchiocchi, A., McCusker, J.P., et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44 (2012), 1006–1014.
Pedersen, M., Viros, A., Cook, M., Marais, R., (G12D) NRAS and kinase-dead BRAF cooperate to drive naevogenesis and melanomagenesis. Pigment Cell Melanoma Res 27 (2014), 1162–1166.
Posch, C., Sanlorenzo, M., Vujic, I., Oses-Prieto, J.A., Cholewa, B.D., Kim, S.T., et al. Phosphoproteomic analyses of NRAS(G12) and NRAS(Q61) mutant melanocytes reveal increased CK2α kinase levels in NRAS(Q61) mutant cells. J Invest Dermatol 136 (2016), 2041–2048.
TCGA Research Network. The Cancer Genome Atlas, http://cancergenome.nih.gov/; 2016 (accessed 28 June 2016).
Wellbrock, C., Arozarena, I., The complexity of the ERK/MAP-K kinase pathway and the treatment of melanoma skin cancer. Front Cell Dev Biol, 4, 2016, 33.
Zhang, F., Cheong, J.K., The renewed battle against RAS-mutant cancers. Cell Mol Life Sci 73 (2016), 1845–1858.
Zhou, B., Ritt, D.A., Morrison, D.K., Der, C.J., Cox, A.D., CK2alpha maintains ERK activity in a kinase-independent manner to promote resistance to inhibitors of RAF and MEK but not ERK in BRAF-mutant melanoma. [e-pub ahead of print] J Biol Chem, 2016 http://dx.doi.org/10.1074/jbc.M115.712885 (accessed 28 June 2016).