CNBP; D. melanogaster; Drosophila melanogaster; ODC; genetics; genomics; human; myotonic dystrophy 2; neuroscience; polyamine; translation; CNBP protein, Drosophila; Drosophila Proteins; Polyamines; RNA-Binding Proteins; Spermidine; Putrescine; Animals; Animals, Genetically Modified; Cell Line; Down-Regulation/physiology; Drosophila Proteins/genetics; Drosophila Proteins/metabolism; Gene Expression Regulation/drug effects; HEK293 Cells; Humans; Motor Activity/genetics; Motor Activity/physiology; Muscle, Skeletal/metabolism; Myotonic Dystrophy/genetics; Myotonic Dystrophy/metabolism; Polyamines/metabolism; Protein Biosynthesis; Putrescine/pharmacology; RNA Interference; RNA-Binding Proteins/genetics; RNA-Binding Proteins/metabolism; Spermidine/pharmacology; Down-Regulation; Gene Expression Regulation; Motor Activity; Muscle, Skeletal; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Abstract :
[en] Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Coni, Sonia ; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
Falconio, Federica A; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy ; Department of Life Sciences Imperial College London South Kensington campus, London, United Kingdom
Marzullo, Marta ; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy ; IBPM CNR c/o Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
Munafò, Marzia ; European Molecular Biology Laboratory (EMBL) Epigenetics & Neurobiology Unit, Campus Adriano Buzzati-Traverso, Monterotond, Italy
Zuliani, Benedetta ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Gene Expression & Cancer ; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
Mosti, Federica; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy ; Department of Neurobiology, Duke University Medical Center, Durham, United States
Fatica, Alessandro; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
Ianniello, Zaira; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
Bordone, Rosa; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
Macone, Alberto; Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
Agostinelli, Enzo; Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy ; International Polyamines Foundation 'ETS-ONLUS', Rome, Italy
Perna, Alessia; Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, University Cattolica del S. Cuore, Roma, Italy
Matkovic, Tanja; Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
Sigrist, Stephan ; Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
Silvestri, Gabriella; Department of Neuroscience, Fondazione Policlinico Gemelli IRCCS, University Cattolica del S. Cuore, Roma, Italy ; Department of Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della testa-Collo, UOC Neurologia, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
Canettieri, Gianluca ; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy ; International Polyamines Foundation 'ETS-ONLUS', Rome, Italy ; Pasteur Institute, Fondazione Cenci-Bolognetti, Rome, Italy
Ciapponi, Laura ; Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, Italy
AFM-Téléthon AIRC - Associazione Italiana per la Ricerca sul Cancro Sapienza - Sapienza Università di Roma Istituto Pasteur-Fondazione Cenci Bolognetti
Funding text :
This work was supported by AFM Telethon (French Muscular Dystrophy Association, project 21025). AIRC (Associazione Italiana Ricerca Cancro IG 17575), Sapienza University grant RM1181642798C54A and Italian Ministry of Education, Universities and Research, Dipartimenti di Eccellenza-L (232/2016), Istituto Pasteur, Fondazione Cenci-Bolognetti, Rome Italy. We thank Vittorio Padovano for his contribution in generating the mouse anti-dCNBP antibody. We thank Gianluca Cestra for critical reading of the manuscript.
Antonucci L, D’Amico D, Di Magno L, Coni S, Di Marcotullio L, Cardinali B, Gulino A, Ciapponi L, Canettieri G. 2014. CNBP regulates wing development in Drosophila melanogaster by promoting IRES-dependent translation of dMyc. Cell Cycle 13:434–439. DOI: https://doi.org/10.4161/cc.27268, PMID: 24275942
Armas P, Nasif S, Calcaterra NB. 2008. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone. Journal of Cellular Biochemistry 103:1013–1036. DOI: https://doi.org/10.1002/jcb.21474, PMID: 17661353
Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, van Blitterswijk MM, Jansen-West K, Paul JW, Rademakers R, Boylan KB, Dickson DW, Petrucelli L. 2013. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. DOI: https://doi.org/10.1016/j.neuron.2013.02.004, PMID: 23415312
Bañez-Coronel M, Ayhan F, Tarabochia AD, Zu T, Perez BA, Tusi SK, Pletnikova O, Borchelt DR, Ross CA, Margolis RL, Yachnis AT, Troncoso JC, Ranum LP. 2015. RAN translation in Huntington disease. Neuron 88: 667–677. DOI: https://doi.org/10.1016/j.neuron.2015.10.038, PMID: 26590344
Benhalevy D, Gupta SK, Danan CH, Ghosal S, Sun HW, Kazemier HG, Paeschke K, Hafner M, Juranek SA. 2017. The human CCHC-type zinc finger nucleic Acid-Binding protein binds G-Rich elements in target mRNA coding sequences and promotes translation. Cell Reports 18:2979–2990. DOI: https://doi.org/10.1016/j.celrep.2017. 02.080, PMID: 28329689
Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, Hunter K, Stanton VP, Thirion J-P, Hudson T, Sohn R, Zemelman B, Snell RG, Rundle SA, Crow S, Davies J, Shelbourne P, Buxton J, Jones C, Juvonen V, et al. 1992. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3´ end of a transcript encoding a protein kinase family member. Cell 68:799–808. DOI: https://doi.org/10.1016/0092-8674(92)90154-5
Calcaterra NB, Armas P, Weiner AM, Borgognone M. 2010. CNBP: a multifunctional nucleic acid chaperone involved in cell death and proliferation control. IUBMB Life 62:707–714. DOI: https://doi.org/10.1002/iub.379, PMID: 20960530
Casero RA, Murray Stewart T, Pegg AE. 2018. Polyamine metabolism and Cancer: treatments, challenges and opportunities. Nature Reviews Cancer 18:681–695. DOI: https://doi.org/10.1038/s41568-018-0050-3, PMID: 30181570
Chen W, Wang Y, Abe Y, Cheney L, Udd B, Li YP. 2007. Haploinsuffciency for Znf9 in Znf9+/-mice is associated with multiorgan abnormalities resembling myotonic dystrophy. Journal of Molecular Biology 368:8–17. DOI: https://doi.org/10.1016/j.jmb.2007.01.088, PMID: 17335846
Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. 2005. Antisense Transcription and Heterochromatin at the DM1 CTG Repeats Are Constrained by CTCF. Molecular Cell 20:483–489. DOI: https://doi.org/10.1016/j.molcel.2005.09.002
Coni S, Di Magno L, Serrao SM, Kanamori Y, Agostinelli E, Canettieri G. 2019. Polyamine metabolism as a therapeutic target in Hedgehog-Driven Basal Cell Carcinoma and Medulloblastoma. Cells 8:150. DOI: https://doi.org/10.3390/cells8020150
Coni S, Serrao SM, Yurtsever ZN, Di Magno L, Bordone R, Bertani C, Licursi V, Ianniello Z, Infante P, Moretti M, Petroni M, Guerrieri F, Fatica A, Macone A, De Smaele E, Di Marcotullio L, Giannini G, Maroder M, Agostinelli E, Canettieri G. 2020. Blockade of EIF5A hypusination limits colorectal cancer growth by inhibiting MYC elongation. Cell Death & Disease 11:1045. DOI: https://doi.org/10.1038/s41419-020-03174-6
D’Amico D, Antonucci L, Di Magno L, Coni S, Sdruscia G, Macone A, Miele E, Infante P, Di Marcotullio L, De Smaele E, Ferretti E, Ciapponi L, Giangaspero F, Yates JR, Agostinelli E, Cardinali B, Screpanti I, Gulino A, Canettieri G. 2015. Non-canonical hedgehog/AMPK-Mediated control of polyamine metabolism supports neuronal and medulloblastoma cell growth. Developmental Cell 35:21–35. DOI: https://doi.org/10.1016/j. devcel.2015.09.008, PMID: 26460945
David AP, Pipier A, Pascutti F, Binolfi A, Weiner AMJ, Challier E, Heckel S, Calsou P, Gomez D, Calcaterra NB, Armas P. 2019. CNBP controls transcription by unfolding DNA G-quadruplex structures. Nucleic Acids Research 47:7901–7913. DOI: https://doi.org/10.1093/nar/gkz527
Di Magno L, Manni S, Di Pastena F, Coni S, Macone A, Cairoli S, Sambucci M, Infante P, Moretti M, Petroni M, Nicoletti C, Capalbo C, De Smaele E, Di Marcotullio L, Giannini G, Battistini L, Goffredo BM, Iorio E, Agostinelli E, Maroder M, et al. 2020. Phenformin inhibits Hedgehog-Dependent tumor growth through a complex I-Independent redox/Corepressor module. Cell Reports 30:1735–1752. DOI: https://doi.org/10.1016/j. celrep.2020.01.024
Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, et al. 2009. Induction of autophagy by spermidine promotes longevity. Nature Cell Biology 11: 1305–1314. DOI: https://doi.org/10.1038/ncb1975, PMID: 19801973
Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A, Tong M, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Magnes C, Trausinger G, Narath S, Meinitzer A, Hu Z, et al. 2016. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nature Medicine 22:1428–1438. DOI: https://doi.org/10.1038/nm.4222, PMID: 27841876
Gerbasi VR, Link AJ. 2007. The Myotonic Dystrophy Type 2 Protein ZNF9 Is Part of an ITAF Complex That Promotes Cap-independent Translation. Molecular & Cellular Proteomics 6:1049–1058. DOI: https://doi.org/10. 1074/mcp.M600384-MCP200
Giansanti MG, Bonaccorsi S, Kurek R, Farkas RM, Dimitri P, Fuller MT, Gatti M. 2006. The class I PITP giotto is required for Drosophila cytokinesis. Current Biology 16:195–201. DOI: https://doi.org/10.1016/j.cub.2005.12. 011, PMID: 16431372
Gulyás M, Bencsik N, Pusztai S, Liliom H, Schlett K. 2016. AnimalTracker: An ImageJ-Based Tracking API to Create a Customized Behaviour Analyser Program. Neuroinformatics 14:479–481. DOI: https://doi.org/10. 1007/s12021-016-9303-z
Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KSY, Schroeder S, Stunnenberg HG, Sinner F, Magnes C, Pieber TR, Dipt S, Fiala A, Schenck A, Schwaerzel M, Madeo F, Sigrist SJ. 2013. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nature Neuroscience 16:1453–1460. DOI: https://doi.org/10.1038/nn.3512
Huichalaf C, Schoser B, Schneider-Gold C, Jin B, Sarkar P, Timchenko L. 2009. Reduction of the Rate of Protein Translation in Patients with Myotonic Dystrophy 2. Journal of Neuroscience 29:9042–9049. DOI: https://doi. org/10.1523/JNEUROSCI.1983-09.2009
Iadevaia V, Caldarola S, Tino E, Amaldi F, Loreni F. 2008. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5’-terminal oligopyrimidine (TOP) mRNAs. RNA 14: 1730–1736. DOI: https://doi.org/10.1261/rna.1037108
Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, Tokuda E, Zamiri B, Gall-Duncan T, Mirceta M, Furukawa Y, Yokota T, Wada K, Taylor JP, Pearson CE, Charlet-Berguerand N, Mizusawa H, Nagai Y, Ishikawa K. 2017. Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31. Neuron 94:108–124. DOI: https://doi.org/10.1016/j.neuron.2017.02.046
Juźwik CA, S. Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. 2019. microRNA dysregulation in neurodegenerative diseases: A systematic review. Progress in Neurobiology 182:101664. DOI: https://doi.org/10.1016/j.pneurobio.2019.101664
Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA, Swanson MS. 2006. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. PNAS 103:11748–11753. DOI: https://doi.org/10.1073/pnas.0604970103
Kemaladewi DU, Benjamin JS, Hyatt E, Ivakine EA, Cohn RD. 2018. Increased polyamines as protective disease modifiers in congenital muscular dystrophy. Human Molecular Genetics 27:1905–1912. DOI: https://doi.org/10. 1093/hmg/ddy097
Leipheimer J, Bloom ALM, Baumstark T, Panepinto JC. 2018. CNBP Homologues Gis2 and Znf9 Interact with a Putative G-Quadruplex-Forming 3´ Untranslated Region, Altering Polysome Association and Stress Tolerance in Cryptococcus neoformans. mSphere 3:e00201–e00218. DOI: https://doi.org/10.1128/mSphere.00201-18
Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL, Day JW, Ranum LPW. 2001. Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9. Science 293:864–867. DOI: https://doi. org/10.1126/science.1062125
Liu P, Gupta N, Jing Y, Zhang H. 2008. Age-related changes in polyamines in memory-associated brain structures in rats. Neuroscience 155:789–796. DOI: https://doi.org/10.1016/j.neuroscience.2008.06.033
Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernández-Torrón R, Garcia-Puga M, Matheu A, de Munain AL. 2015. Muscle wasting in myotonic dystrophies: a model of premature aging. Frontiers in Aging Neuroscience 7: 125. DOI: https://doi.org/10.3389/fnagi.2015.00125
Mohan A, Goodwin M, Swanson MS. 2014. RNA–protein interactions in unstable microsatellite diseases. Brain Research 1584:3–14. DOI: https://doi.org/10.1016/j.brainres.2014.03.039
Mori K, Weng S-M, Arzberger T, May S, Rentzsch K, Kremmer E, Schmid B, Kretzschmar HA, Cruts M, Van Broeckhoven C, Haass C, Edbauer D. 2013. The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS. Science 339:1335–1338. DOI: https://doi.org/10.1126/science. 1232927
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, Chen G, Weatherspoon MR, Clark HB, Ebner TJ, Day JW, Ranum LPW. 2006. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nature Genetics 38:758–769. DOI: https://doi.org/10.1038/ng1827
Nguyen L, Cleary JD, Ranum LPW. 2019. Repeat-Associated Non-ATG Translation: Molecular Mechanisms and Contribution to Neurological Disease. Annual Review of Neuroscience 42:227–247. DOI: https://doi.org/10. 1146/annurev-neuro-070918-050405
Paz I, Kosti I, Ares M, Cline M, Mandel-Gutfreund Y. 2014. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Research 42:W361–W367. DOI: https://doi.org/10.1093/nar/gku406
Pegg AE. 2006. Regulation of Ornithine Decarboxylase. Journal of Biological Chemistry 281:14529–14532. DOI: https://doi.org/10.1074/jbc.R500031200
Perbellini R, Greco S, Sarra-Ferraris G, Cardani R, Capogrossi MC, Meola G, Martelli F. 2011. Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscular Disorders 21:81–88. DOI: https://doi.org/10.1016/j.nmd.2010.11.012
Pyronnet S, Pradayrol L, Sonenberg N. 2000. A Cell Cycle–Dependent Internal Ribosome Entry Site. Molecular Cell 5:607–616. DOI: https://doi.org/10.1016/S1097-2765(00)80240-3
Raheem O, Olufemi S-E, Bachinski LL, Vihola A, Sirito M, Holmlund-Hampf J, Haapasalo H, Li Y-P, Udd B, Krahe R. 2010. Mutant (CCTG)n Expansion Causes Abnormal Expression of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy Type 2. The American Journal of Pathology 177:3025–3036. DOI: https://doi.org/10.2353/ajpath. 2010.100179
Rom E, Kahana C. 1993. Isolation and Characterization of the Drosophila Ornithine Decarboxylase Locus: Evidence for the Presence of Two Transcribed ODC Genes in the Drosophila Genome. DNA and Cell Biology 12:499–508. DOI: https://doi.org/10.1089/dna.1993.12.499
Salisbury E, Schoser B, Schneider-Gold C, Wang G-L, Huichalaf C, Jin B, Sirito M, Sarkar P, Krahe R, Timchenko NA, Timchenko LT. 2009. Expression of RNA CCUG Repeats Dysregulates Translation and Degradation of Proteins in Myotonic Dystrophy 2 Patients. The American Journal of Pathology 175:748–762. DOI: https://doi. org/10.2353/ajpath.2009.090047
Sammons MA, Samir P, Link AJ. 2011. Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9. Biochemical and Biophysical Research Communications 406:13–19. DOI: https://doi.org/10.1016/j.bbrc.2011.01.086
Schneider-Gold C, Timchenko LT. 2010. CCUG Repeats Reduce the Rate of Global Protein Synthesis in Myotonic Dystrophy Type 2. Reviews in the Neurosciences 21:19–28. DOI: https://doi.org/10.1515/REVNEURO.2010.21. 1.19
Somma MP, Ceprani F, Bucciarelli E, Naim V, De Arcangelis V, Piergentili R, Palena A, Ciapponi L, Giansanti MG, Pellacani C, Petrucci R, Cenci G, Vernì F, Fasulo B, Goldberg ML, Di Cunto F, Gatti M. 2008. Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference. PLOS Genetics 4: e1000126. DOI: https://doi.org/10.1371/journal.pgen.1000126
Soragni E, Petrosyan L, Rinkoski TA, Wieben ED, Baratz KH, Fautsch MP, Gottesfeld JM. 2018. Repeat-Associated Non-ATG (RAN) Translation in Fuchs’ Endothelial Corneal Dystrophy. Investigative Opthalmology & Visual Science 59:1888–1896. DOI: https://doi.org/10.1167/iovs.17-23265
Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, Renoux AJ, Chen K, Scaglione KM, Basrur V, Elenitoba-Johnson K, Vonsattel JP, Louis ED, Sutton MA, Taylor JP, Mills RE, Charlet-Berguerand N, Paulson HL. 2013. CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron 78:440–455. DOI: https://doi.org/10.1016/j.neuron.2013.03.026
Wallace WH. 2000. The physiological role of the polyamines. European Journal of Clinical Investigation 30:1–3. DOI: https://doi.org/10.1046/j.1365-2362.2000.00585.x
Wallace HM, Fraser AV, Hughes A. 2003. A perspective of polyamine metabolism. Biochemical Journal 376:1– 14. DOI: https://doi.org/10.1042/bj20031327
Wei C, Stock L, Schneider-Gold C, Sommer C, Timchenko NA, Timchenko L. 2018. Reduction of cellular nucleic acid binding protein encoded by a myotonic dystrophy type 2 gene causes muscle atrophy. Molecular and Cellular Biology 38:e00649-17. DOI: https://doi.org/10.1128/MCB.00649-17, PMID: 29735719
Yu Z, Goodman LD, Shieh S-Y, Min M, Teng X, Zhu Y, Bonini NM. 2015. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Human Molecular Genetics 24:954–962. DOI: https://doi.org/10.1093/hmg/ddu507
Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, Margolis J, Peterson M, Markowski TW, Ingram MAC, Nan Z, Forster C, Low WC, Schoser B, Somia NV, Clark HB, Schmechel S, Bitterman PB, Gourdon G, Swanson MS, et al. 2011. Non-ATG–initiated translation directed by microsatellite expansions. PNAS 108: 260–265. DOI: https://doi.org/10.1073/pnas.1013343108
Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, Miller TM, Harms MB, Falchook AE, Subramony SH, Ostrow LW, Rothstein JD, Troncoso JC, Ranum LPW. 2013. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. PNAS 110:E4968–E4977. DOI: https://doi.org/10. 1073/pnas.1315438110
Zu T, Cleary JD, Liu Y, Bañez-Coronel M, Bubenik JL, Ayhan F, Ashizawa T, Xia G, Clark HB, Yachnis AT, Swanson MS, Ranum LPW. 2017. RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2. Neuron 95:1292–1305. DOI: https://doi.org/10.1016/j.neuron.2017.08.039