[en] Genetically engineered mouse models offer essential opportunities to investigate the mechanisms of initiation and progression in melanoma. Here, we report a new simplified histopathology classification of mouse melanocytic lesions in Tyr::NRASQ 61K derived models, using an interactive decision tree that produces homogeneous categories. Reproducibility for this classification system was evaluated on a panel of representative cases of murine melanocytic lesions by pathologists and basic scientists. Reproducibility, measured as inter-rater agreement between evaluators using a modified Fleiss’ kappa statistic, revealed a very good agreement between observers. Should this new simplified classification be adopted, it would create a robust system of communication between researchers in the field of mouse melanoma models.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Sohier, Pierre; Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France ; CNRS UMR3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France ; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Legrand, Léa; INSERM U1053, Team 3 Oncogenesis of Cutaneous Lymphomas, Univ. Bordeaux, Bordeaux, France ; Pathology Department, CHU Bordeaux, Pessac, France
Aktary, Zackie; Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France ; CNRS UMR3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France ; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Grill, Christine ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale ; Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France ; CNRS UMR3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France ; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Delmas, Véronique; Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France ; CNRS UMR3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France ; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Bernex, Florence; IRCM, Inserm, ICM, Univ Montpellier, Montpellier, France
Reyes-Gomez, Edouard; INRA, UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France ; UMR955 Génétique Fonctionnelle et Médicale, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France ; Unité d'Embryologie, d'Histologie et d'Anatomie Pathologique, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
Larue, Lionel ; Institut Curie, INSERM U1021, Normal and Pathological Development of Melanocytes, PSL Research University, Orsay, France ; CNRS UMR3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France ; Equipe Labellisée Ligue Contre le Cancer, Orsay, France
Vergier, Béatrice; INSERM U1053, Team 3 Oncogenesis of Cutaneous Lymphomas, Univ. Bordeaux, Bordeaux, France ; Pathology Department, CHU Bordeaux, Pessac, France
Language :
English
Title :
A histopathological classification system of Tyr::NRASQ61K murine melanocytic lesions: A reproducible simplified classification
INCa - Institut National du Cancer Ligue Nationale Contre le Cancer ITMO Cancer ANR - Agence Nationale de la Recherche
Funding text :
This work was supported by the Ligue Contre le Cancer—comité de l’Oise, PAIR melanoma, INCa, ITMO Cancer, and is under the program «Investissements d’Avenir» launched by the French Government and implemented by ANR Labex CelTisPhyBio (ANR-11-LBX-0038 and ANR-10-IDEX-0001-02 PSL). PS has a fellowship from INSERM, and ZA and CG from ARC. We are grateful to Maxime Battistella, Arnaud De LaThis work was supported by the Ligue Contre le Cancer?comit? de l'Oise, PAIR melanoma, INCa, ITMO Cancer, and is under the program ?Investissements d'Avenir? launched by the French Government and implemented by ANR Labex CelTisPhyBio (ANR-11-LBX-0038 and ANR-10-IDEX-0001-02 PSL). PS has a fellowship from INSERM, and?ZA and CG from ARC. We are grateful to Maxime Battistella, Arnaud De La Fourchardi?re, Giorgia Egidy, Laurent Le Cam, and Enrico Radaelli for helpful discussions.
Ackermann, J., Frutschi, M., Kaloulis, K., Mckee, T., Trumpp, A., & Beermann, F. (2005). Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Research, 65, 4005–4011. https://doi.org/10.1158/0008-5472.CAN-04-2970
Barthold, S. W., Borowsky, A. D., Brayton, C., Bronson, R., Cardiff, R. D., Griffey, S. M., … Ward, J. M. (2007). From whence will they come? - A perspective on the acute shortage of pathologists in biomedical research Journal of Veterinary Diagnostic Investigation, 19, 455–456.
Campagne, C., Reyes-Gomez, E., Battistella, M., Bernex, F., Chateau-Joubert, S., Huet, H., … Egidy, G. (2013). Histopathological atlas and proposed classification for melanocytic lesions in Tyr:NRas(Q61K); Cdkn2a(-/-) transgenic mice. Pigment Cell & Melanoma Research, 26, 735–742. https://doi.org/10.1111/pcmr.12115
Cardiff, R. D. (2007). Pathologists needed to cope with mutant mice. Nature, 447, 528. https://doi.org/10.1038/447528c
Cardiff, R. D., Ward, J. M., & Barthold, S. W. (2008). ‘One medicine—one pathology’: Are veterinary and human pathology prepared? Laboratory Investigation, 88, 18–26. https://doi.org/10.1038/labinvest.3700695
Conde-Perez, A., Gros, G., Longvert, C., Pedersen, M., Petit, V., Aktary, Z., … Larue, L. (2015). A caveolin-dependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity. Nature Communications, 6, 8093. https://doi.org/10.1038/ncomms9093
Conde-Perez, A., & Larue, L. (2014). Human relevance of NRAS/BRAF mouse melanoma models. European Journal of Cell Biology, 93, 82–86. https://doi.org/10.1016/j.ejcb.2013.10.010
Delmas, V., Beermann, F., Martinozzi, S., Carreira, S., Ackermann, J., Kumasaka, M., … Larue, L. (2007). Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes & Development, 21, 2923–2935. https://doi.org/10.1101/gad.450107
Delmas, V., Martinozzi, S., Bourgeois, Y., Holzenberger, M., & Larue, L. (2003). Cre-mediated recombination in the skin melanocyte lineage. Genesis, 36, 73–80. https://doi.org/10.1002/(ISSN)1526-968X
Dhomen, N., Reis-Filho, J. S., Da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., … Marais, R. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15, 294–303. https://doi.org/10.1016/j.ccr.2009.02.022
Ferguson, B., Soyer, H. P., & Walker, G. J. (2015). Clinicopathological characterization of mouse models of melanoma. Methods in Molecular Biology, 1267, 251–261. https://doi.org/10.1007/978-1-4939-2297-0
Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions. Hoboken, NJ: Wiley. https://doi.org/10.1002/0471445428
Frese, K. K., & Tuveson, D. A. (2007). Maximizing mouse cancer models. Nature Reviews Cancer, 7, 645–658.
Herrington, C. S. (2014). Muir's Textbook of Pathology. Boca Raton, FL, USA: CRC Press.
Larue, L. (2012). Origin of mouse melanomas. The Journal of Investigative Dermatology, 132, 2135–2136. https://doi.org/10.1038/jid.2012.221
Larue, L., & Beermann, F. (2007). Cutaneous melanoma in genetically modified animals. Pigment Cell Research, 20, 485–497. https://doi.org/10.1111/j.1600-0749.2007.00411.x
Longvert, C., Gros, G., Beermann, F., Marais, R., Delmas, V., & Larue, L. (2011). Murine cutaneous melanoma models. Importance of the genetic background. Annales de Pathologie, 31, S70–S73. https://doi.org/10.1016/j.annpat.2011.09.002
Manicam, C., Pitz, S., Brochhausen, C., Grus, F. H., Pfeiffer, N., & Gericke, A. (2014). Effective melanin depigmentation of human and murine ocular tissues: An improved method for paraffin and frozen sections. PLoS One, 9, e102512. https://doi.org/10.1371/journal.pone.0102512
Marasini, D., Quatto, P., & Ripamonti, E. (2016). Assessing the inter-rater agreement for ordinal data through weighted indexes. Statistical Methods in Medical Research, 25, 2611–2633. https://doi.org/10.1177/0962280214529560
Mooi, W. J. (2001). The expanding spectrum of cutaneous blue naevi. Current Diagnostic Pathology, 7, 58–68.
Perez-Guijarro, E., Day, C. P., Merlino, G., & Zaidi, M. R. (2017). Genetically engineered mouse models of melanoma. Cancer, 123, 2089–2103. https://doi.org/10.1002/cncr.30684
Quatto, P., & Ripamonti, E. (2014). Raters: A Modification of Fleiss’ Kappa in Case of Nominal and Ordinal Variables.
R-Core-Team (2017). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Serrano, M., Lee, H., Chin, L., Cordon-Cardo, C., Beach, D., & Depinho, R. A. (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell, 85, 27–37. https://doi.org/10.1016/S0092-8674(00)81079-X
Van Diest, P. J., Baak, J. P., Matze-Cok, P., Wisse-Brekelmans, E. C., Van Galen, C. M., Kurver, P. H., … Kwee, W. S., (1992). Reproducibility of mitosis counting in 2,469 breast cancer specimens: Results from the Multicenter Morphometric Mammary Carcinoma Project. Human Pathology, 23, 603–607. https://doi.org/10.1016/0046-8177(92)90313-R
Weidner, N., Cote, R., Suster, S., & Weiss, L. (2009). Modern surgical pathology. Amsterdam, the Netherlands: Elsevier.
Wurm, E. M., Lin, L. L., Ferguson, B., Lambie, D., Prow, T. W., Walker, G. J., & Soyer, H. P. (2012). A blueprint for staging of murine melanocytic lesions based on the Cdk4 (R24C/R24C):Tyr- NRAS (Q) (61K) model. Experimental Dermatology, 21, 676–681. https://doi.org/10.1111/j.1600-0625.2012.01543.x
Zembowicz, A., & Phadke, P. A. (2011). Blue nevi and variants: An update. Archives of Pathology and Laboratory Medicine, 135, 327–336.