[en] H2-relaxin (RLN2) is a two-chain peptide hormone structurally related to insulin with a therapeutic potential in multiple indications. However, multiple injections of human RLN2 induced anti-RLN2 Abs in patients, hampering its clinical development. As T cell activation is required to produce Abs, we wondered whether T cells specific for RLN2 might be already present in the human blood before any injection. We therefore quantified the RLN2-specific T cell repertoire using PBMCs collected from healthy donors. CD4 T cells were stimulated in multiple replicates by weekly rounds of stimulation by dendritic cells loaded with RLN2, and their specificity was assessed by IFN-γ ELISPOT. The number of specific T cell lines was used to estimate the frequency of circulating T cells. In vitro T cell response was demonstrated in 18 of the 23 healthy donors, leading to the generation of 70 independent RLN2-specific T cell lines. The mean frequency of RLN2-specific CD4 T cells was similar to that of T cells specific for known immunogenic therapeutic proteins. Using overlapping peptides, we identified multiple T cell epitopes hosted in the N-terminal parts of the α- and β-chains and common to multiple donors, in agreement with their capacity to bind to multiple HLA-DR molecules. Our results provide important clues to the immunogenicity of RLN2 and highlight the weak central immune tolerance induced against this self-hormone.
Disciplines :
Immunology & infectious disease
Author, co-author :
Azam, Aurélien ; Biologics Research, Sanofi Research and Development, 94400 Vitry sur Seine, France ; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
Gallais, Yann; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
Mallart, Sergio ; Integrated Drug Discovery, Sanofi Research and Development, 91380 Chilly Mazarin, France, and
Illiano, Stephane; Cardiovascular Diseases and Metabolism, Sanofi Research and Development, 91380 Chilly Mazarin, France
Duclos, Olivier ; Integrated Drug Discovery, Sanofi Research and Development, 91380 Chilly Mazarin, France, and
Prades, Catherine; Biologics Research, Sanofi Research and Development, 94400 Vitry sur Seine, France
Maillère, Bernard; Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif-sur-Yvette, France, bernard.maillere@cea.fr
Language :
English
Title :
Healthy Donors Exhibit a CD4 T Cell Repertoire Specific to the Immunogenic Human Hormone H2-Relaxin before Injection.
Publication date :
2019
Journal title :
Journal of Immunology
ISSN :
0022-1767
eISSN :
1550-6606
Publisher :
American Association of Immunologists, Bethesda, United States
This work was supported by Sanofi and CEA. This work was also supported by the Laboratory of Excellence in Research on Medication and Therapeutic Innovation (to B.M.).
Bathgate, R. A., M. L. Halls, E. T. van der Westhuizen, G. E. Callander, M. Kocan, and R. J. Summers. 2013. Relaxin family peptides and their receptors. Physiol. Rev. 93: 405-480.
Weiss, G., S. Teichman, D. Stewart, D. Nader, S. Wood, P. Breining, and E. Unemori. 2016. Recombinant human relaxin versus placebo for cervical ripening: a double-blind randomised trial in pregnant women scheduled for induction of labour. BMC Pregnancy Childbirth 16: 260.
Teerlink, J. R., G. Cotter, B. A. Davison, G. M. Felker, G. Filippatos, B. H. Greenberg, P. Ponikowski, E. Unemori, A. A. Voors, K. F. Adams, Jr., et al; RELAXin in Acute Heart Failure (RELAX-AHF) Investigators. 2013. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet 381: 29-39.
Seibold, J. R., J. H. Korn, R. Simms, P. J. Clements, L. W. Moreland, M. D. Mayes, D. E. Furst, N. Rothfield, V. Steen, M. Weisman, et al. 2000. Recombinant human relaxin in the treatment of scleroderma. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 132: 871-879.
Blank, M., and T. Y. McDowell. 2014. A phase II/III, multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of Relaxin in subjects with acute heart failure. Silver Spring, MD: U.S. Food and Drug Administration Briefing Document for the Cardiovascular and Renal Drugs Advisory Committee, p. 1-205.
Porter, S. 2001. Human immune response to recombinant human proteins. J. Pharm. Sci. 90: 1-11.
Mianowska, B., A. Szadkowska, I. Pietrzak, A. Zmysłowska, O. Wegner, J. Tomczonek, J. Bodalski, and W. Młynarski. 2011. Immunogenicity of different brands of human insulin and rapid-acting insulin analogs in insulin-naïve children with type 1 diabetes. Pediatr. Diabetes 12: 78-84.
Chen, J. W., J. Frystyk, T. Lauritzen, and J. S. Christiansen. 2005. Impact of insulin antibodies on insulin aspart pharmacokinetics and pharmacodynamics after 12-week treatment with multiple daily injections of biphasic insulin aspart 30 in patients with type 1 diabetes. Eur. J. Endocrinol. 153: 907-913.
Casadevall, N., J. Nataf, B. Viron, A. Kolta, J. J. Kiladjian, P. Martin-Dupont, P. Michaud, T. Papo, V. Ugo, I. Teyssandier, et al. 2002. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346: 469-475.
van Schouwenburg, P. A., S. Kruithof, C. Votsmeier, K. van Schie, M. H. Hart, R. N. de Jong, E. E. van Buren, M. van Ham, L. Aarden, G. Wolbink, et al. 2014. Functional analysis of the anti-adalimumab response using patient-derived monoclonal antibodies. J. Biol. Chem. 289: 34482-34488.
Hamze, M., S. Meunier, A. Karle, A. Gdoura, A. Goudet, N. Szely, M. Pallardy, F. Carbonnel, S. Spindeldreher, X. Mariette, et al. 2017. Characterization of CD4 T cell epitopes of infliximab and rituximab identified from healthy donors. Front. Immunol. 8: 500.
Moon, J. J., H. H. Chu, M. Pepper, S. J. McSorley, S. C. Jameson, R. M. Kedl, and M. K. Jenkins. 2007. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27: 203-213.
Geiger, R., T. Duhen, A. Lanzavecchia, and F. Sallusto. 2009. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 206: 1525-1534.
Kwok, W. W., V. Tan, L. Gillette, C. T. Littell, M. A. Soltis, R. B. LaFond, J. Yang, E. A. James, and J. H. DeLong. 2012. Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. J. Immunol. 188: 2537-2544.
Castelli, F. A., N. Szely, A. Olivain, N. Casartelli, C. Grygar, A. Schneider, A. Besse, Y. Levy, O. Schwartz, and B. Maillère. 2013. Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of pre-existing peptide-specific T cells in healthy donors. J. Immunol. 190: 5757-5763.
Delluc, S., G. Ravot, and B. Maillere. 2010. Quantification of the preexisting CD4 T cell repertoire specific for human erythropoietin reveals its immunogenicity potential. Blood 116: 4542-4545.
Delluc, S., G. Ravot, and B. Maillere. 2011. Quantitative analysis of the CD4 T cell repertoire specific to therapeutic antibodies in healthy donors. FASEB J. 25: 2040-2048.
Cibotti, R., J. M. Kanellopoulos, J. P. Cabaniols, O. Halle-Panenko, K. Kosmatopoulos, E. Sercarz, and P. Kourilsky. 1992. Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc. Natl. Acad. Sci. USA 89: 416-420.
Meunier, S., C. Menier, E. Marcon, S. Lacroix-Desmazes, and B. Maillère. 2017. CD4 T cells specific for factor VIII are present at high frequency in healthy donors and comprise naïve and memory cells. Blood Adv. 1: 1842-1847.
Fagerberg, L., B. M. Hallstrom, P. Oksvold, C. Kampf, D. Djureinovic, J. Odeberg, M. Habuka, S. Tahmasebpoor, A. Danielsson, K. Edlund, et al. 2014. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13: 397-406.
Fan, Y., W. A. Rudert, M. Grupillo, J. He, G. Sisino, and M. Trucco. 2009. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J. 28: 2812-2824.
Yano, M., N. Kuroda, H. Han, M. Meguro-Horike, Y. Nishikawa, H. Kiyonari, K. Maemura, Y. Yanagawa, K. Obata, S. Takahashi, et al. 2008. Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J. Exp. Med. 205: 2827-2838.
Ohashi, P. S., S. Oehen, K. Buerki, H. Pircher, C. T. Ohashi, B. Odermatt, B. Malissen, R. M. Zinkernagel, and H. Hengartner. 1991. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65: 305-317.
Matzinger, P., and T. Kamala. 2011. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11: 221-230.
Piccinni, M. P., D. Bani, L. Beloni, C. Manuelli, C. Mavilia, F. Vocioni, M. Bigazzi, T. B. Sacchi, S. Romagnani, and E. Maggi. 1999. Relaxin favors the development of activated human T cells into Th1-like effectors. Eur. J. Immunol. 29: 2241-2247.
Tangri, S., B. R. Mothé, J. Eisenbraun, J. Sidney, S. Southwood, K. Briggs, J. Zinckgraf, P. Bilsel, M. Newman, R. Chesnut, et al. 2005. Rationally engineered therapeutic proteins with reduced immunogenicity. J. Immunol. 174: 3187-3196.
Moise, L., C. Song, W. D. Martin, R. Tassone, A. S. De Groot, and D. W. Scott. 2012. Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clin. Immunol. 142: 320-331.
Mazor, R., A. N. Vassall, J. A. Eberle, R. Beers, J. E. Weldon, D. J. Venzon, K. Y. Tsang, I. Benhar, and I. Pastan. 2012. Identification and elimination of an immunodominant T cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc. Natl. Acad. Sci. USA 109: E3597-E3603.