[en] Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin-producing β cells within the pancreas are destroyed. Identification of target Ags and epitopes of the β cell-reactive T cells is important both for understanding T1D pathogenesis and for the rational development of Ag-specific immunotherapies for the disease. Several studies suggest that proinsulin is an early and integral target autoantigen in T1D. However, proinsulin epitopes recognized by human CD4+ T cells have not been comprehensively characterized. Using a dye dilution-based T cell cloning method, we generated and characterized 24 unique proinsulin-specific CD4+ T cell clones from the peripheral blood of 17 individuals who carry the high-risk DR3-DQ2 and/or DR4-DQ8 HLA class II haplotypes. Some of the clones recognized previously reported DR4-restricted epitopes within the C-peptide (C25-35) or A-chain (A1-15) of proinsulin. However, we also characterized DR3-restricted epitopes within both the B-chain (B16-27 and B22-C3) and C-peptide (C25-35). Moreover, we identified DQ2-restricted epitopes within the B-chain and several DQ2- or DQ8-restricted epitopes within the C-terminal region of C-peptide that partially overlap with previously reported DQ-restricted epitopes. Two of the DQ2-restricted epitopes, B18-26 and C22-33, were shown to be naturally processed from whole human proinsulin. Finally, we observed a higher frequency of CDR3 sequences matching the TCR sequences of the proinsulin-specific T cell clones in pancreatic lymph node samples compared with spleen samples. In conclusion, we confirmed several previously reported epitopes but also identified novel (to our knowledge) epitopes within proinsulin, which are presented by HLA class II molecules associated with T1D risk.
Disciplines :
Immunology & infectious disease
Author, co-author :
Ihantola, Emmi-Leena ; Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
Ilmonen, Henna ; Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
Kailaanmäki, Anssi ; Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
Rytkönen-Nissinen, Marja ; Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland
Azam, Aurélien ; Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
Maillère, Bernard; Commissariat à l'Energie Atomique et aux Energies Alternatives-Saclay, Université Paris-Saclay, Service d'Ingénierie Moléculaire des Protéines, 91191 Gif Sur Yvette, France
Lindestam Arlehamn, Cecilia S ; La Jolla Institute for Immunology, La Jolla, CA 92037
Sette, Alessandro; La Jolla Institute for Immunology, La Jolla, CA 92037 ; Department of Medicine, University of California San Diego, La Jolla, CA 92093
Motwani, Keshav ; Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
Seay, Howard R ; Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610
Brusko, Todd M ; Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610 ; Department of Pediatrics, University of Florida, College of Medicine Gainesville, FL 32610
Knip, Mikael ; Tampere Center for Child Health Research, Tampere University Hospital, FI-33520 Tampere, Finland ; Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland ; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FI-00014 Helsinki, Finland ; Folkhälsan Research Center, FI-00290 Helsinki, Finland
Veijola, Riitta ; PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, FI-90014 Oulu, Finland
Toppari, Jorma ; Department of Pediatrics, Turku University Hospital, FI-20521 Turku, Finland ; Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, FI-20520 Turku, Finland
Ilonen, Jorma ; Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, FI-20520 Turku, Finland ; Clinical Microbiology, Turku University Hospital, FI-20521 Turku, Finland, and
Kinnunen, Tuure ; Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, FI-70210 Kuopio, Finland, tuure.kinnunen@uef.fi ; Eastern Finland Laboratory Centre (ISLAB), FI-70210 Kuopio, Finland
This work was supported by the Academy of Finland (Decision 307320), the Sigrid Jusélius Foundation, State Research Funding (VTR), and the Finnish Diabetes Research Foundation. The Finnish Type 1 Diabetes Prediction and Prevention study was supported by the Academy of Finland (Decisions 250114 and 286765), the Sigrid Jusélius Foundation, and the Juvenile Diabetes Research Foundation International (JDRF). The Network for Pancreatic Organ Donors with Diabetes is supported by the JDRF, with cooperative mechanistic study support by The Leona M. and Harry B. Helmsley Charitable Trust (to T.M.B.). The funders had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; and in the preparation, review, or approval of the manuscript.
Bluestone, J. A., K. Herold, and G. Eisenbarth. 2010. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464: 1293-1300.
Krishnamurthy, B., C. Selck, J. Chee, G. Jhala, and T. W. H. Kay. 2016. Analysis of antigen specific T cells in diabetes - lessons from pre-clinical studies and early clinical trials. J. Autoimmun. 71: 35-43.
Roep, B. O., and M. Peakman. 2010. Surrogate end points in the design of immunotherapy trials: Emerging lessons from type 1 diabetes. Nat. Rev. Immunol. 10: 145-152.
Nakayama, M., N. Abiru, H. Moriyama, N. Babaya, E. Liu, D. Miao, L. Yu, D. R. Wegmann, J. C. Hutton, J. F. Elliott, and G. S. Eisenbarth. 2005. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435: 220-223.
Krishnamurthy, B., N. L. Dudek, M. D. McKenzie, A. W. Purcell, A. G. Brooks, S. Gellert, P. G. Colman, L. C. Harrison, A. M. Lew, H. E. Thomas, and T. W. Kay. 2006. Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J. Clin. Invest. 116: 3258-3265.
Ilonen, J., A. Hammais, A. P. Laine, J. Lempainen, O. Vaarala, R. Veijola, O. Simell, and M. Knip. 2013. Patterns of b-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62: 3636-3640.
Krischer, J. P., K. F. Lynch, D. A. Schatz, J. Ilonen, A. Lernmark, W. A. Hagopian, M. J. Rewers, J. X. She, O. G. Simell, J. Toppari, et al; TEDDY Study Group. 2015. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: The TEDDY study. Diabetologia 58: 980-987.
Bennett, S. T., A. M. Lucassen, S. C. Gough, E. E. Powel, D. E. Undlien, L. E. Pritchard, M. E. Merriman, Y. Kawaguchi, M. J. Dronsfield, F. Pociot, et al. 1995. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat. Genet. 9: 284-292.
Vafiadis, P., S. T. Bennett, J. A. Todd, J. Nadeau, R. Grabs, C. G. Goodyer, S. Wickramasinghe, E. Colle, and C. Polychronakos. 1997. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15: 289-292.
Durinovic-Belló, I., R. P. Wu, V. H. Gersuk, S. Sanda, H. G. Shilling, and G. T. Nepom. 2010. Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin. Genes Immun. 11: 188-193.
Hermann, R., H. Turpeinen, A. P. Laine, R. Veijola, M. Knip, O. Simell, I. Sipilä, H. K. Akerblom, and J. Ilonen. 2003. HLA DR-DQ-encoded genetic determinants of childhood-onset type 1 diabetes in Finland: An analysis of 622 nuclear families. Tissue Antigens 62: 162-169.
Erlich, H., A. M. Valdes, J. Noble, J. A. Carlson, M. Varney, P. Concannon, J. C. Mychaleckyj, J. A. Todd, P. Bonella, A. L. Fear, et al; Type 1 Diabetes Genetics Consortium. 2008. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: Analysis of the type 1 diabetes genetics consortium families. Diabetes 57: 1084-1092.
Pathiraja, V., J. P. Kuehlich, P. D. Campbell, B. Krishnamurthy, T. Loudovaris, P. T. Coates, T. C. Brodnicki, P. J. O'Connell, K. Kedzierska, C. Rodda, et al. 2015. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 64: 172-182.
Michels, A. W., L. G. Landry, K. A. McDaniel, L. Yu, M. Campbell-Thompson, W. W. Kwok, K. L. Jones, P. A. Gottlieb, J. W. Kappler, Q. Tang, et al. 2017. Islet-derived CD4 T cells targeting proinsulin in human autoimmune diabetes. Diabetes 66: 722-734.
Babon, J. A., M. E. DeNicola, D. M. Blodgett, I. Crèvecoeur, T. S. Buttrick, R. Maehr, R. Bottino, A. Naji, J. Kaddis, W. Elyaman, et al. 2016. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. [Published erratum appears in 2017 Nat. Med. 23: 264; Published erratum appears in 2017 Nat. Med. 23: 1004.] Nat. Med. 22: 1482-1487.
Nepom, B. S., D. Schwarz, J. P. Palmer, and G. T. Nepom. 1987. Transcomplementation of HLA genes in IDDM. HLA-DQ a- and b-chains produce hybrid molecules in DR3/4 heterozygotes. Diabetes 36: 114-117.
Mannering, S. I., L. C. Harrison, N. A. Williamson, J. S. Morris, D. J. Thearle, K. P. Jensen, T. W. Kay, J. Rossjohn, B. A. Falk, G. T. Nepom, and A.W. Purcell. 2005. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J. Exp. Med. 202: 1191-1197.
Mannering, S. I., S. H. Pang, N. A. Williamson, G. Naselli, E. C. Reynolds, N. M. O'Brien-Simpson, A. W. Purcell, and L. C. Harrison. 2009. The A-chain of insulin is a hot-spot for CD4+ T cell epitopes in human type 1 diabetes. Clin. Exp. Immunol. 156: 226-231.
So, M., C. M. Elso, E. Tresoldi, M. Pakusch, V. Pathiraja, J. M. Wentworth, L. C. Harrison, B. Krishnamurthy, H. E. Thomas, C. Rodda, et al. 2018. Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. Proc. Natl. Acad. Sci. USA 115: 10732-10737.
Yang, J., N. Danke, M. Roti, L. Huston, C. Greenbaum, C. Pihoker, E. James, and W. W. Kwok. 2008. CD4+ T cells from type 1 diabetic and healthy subjects exhibit different thresholds of activation to a naturally processed proinsulin epitope. J. Autoimmun. 31: 30-41.
Durinovic-Belló, I., S. Rosinger, J. A. Olson, M. Congia, R. C. Ahmad, M. Rickert, J. Hampl, H. Kalbacher, J. W. Drijfhout, E. D. Mellins, et al. 2006. DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype. Proc. Natl. Acad. Sci. USA 103: 11683-11688.
Arif, S., T. I. Tree, T. P. Astill, J. M. Tremble, A. J. Bishop, C. M. Dayan, B. O. Roep, and M. Peakman. 2004. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J. Clin. Invest. 113: 451-463.
Congia, M., S. Patel, A. P. Cope, S. De Virgiliis, and G. Sønderstrup. 1998. T cell epitopes of insulin defined in HLA-DR4 transgenic mice are derived from preproinsulin and proinsulin. Proc. Natl. Acad. Sci. USA 95: 3833-3838.
Kent, S. C., Y. Chen, L. Bregoli, S. M. Clemmings, N. S. Kenyon, C. Ricordi, B. J. Hering, and D. A. Hafler. 2005. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435: 224-228.
Spanier, J. A., N. L. Sahli, J. C. Wilson, T. Martinov, T. Dileepan, A. L. Burrack, E. B. Finger, B. R. Blazar, A. W. Michels, A. Moran, et al. 2017. Increased effector memory insulin-specific CD4+ T cells correlate with insulin autoantibodies in patients with recent-onset type 1 diabetes. Diabetes 66: 3051-3060.
Alleva, D. G., P. D. Crowe, L. Jin, W. W. Kwok, N. Ling, M. Gottschalk, P. J. Conlon, P. A. Gottlieb, A. L. Putnam, and A. Gaur. 2001. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J. Clin. Invest. 107: 173-180.
Yang, J., I.-T. Chow, T. Sosinowski, N. Torres-Chinn, C. J. Greenbaum, E. A. James, J. W. Kappler, H. W. Davidson, and W. W. Kwok. 2014. Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc. Natl. Acad. Sci. USA 111: 14840-14845.
Nakayama, M., K. McDaniel, L. Fitzgerald-Miller, C. Kiekhaefer, J. K. Snell-Bergeon, H. W. Davidson, M. Rewers, L. Yu, P. Gottlieb, J. W. Kappler, and A. Michels. 2015. Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc. Natl. Acad. Sci. USA 112: 4429-4434.
Tree, T. I., J. Lawson, H. Edwards, A. Skowera, S. Arif, B. O. Roep, and M. Peakman. 2010. Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression. Diabetes 59: 1451-1460.
Parviainen, S., T. Kinnunen, M. Rytkönen-Nissinen, A. Nieminen, A. Liukko, and T. Virtanen. 2013. Mammal-derived respiratory lipocalin allergens do not exhibit dendritic cell-activating capacity. Scand. J. Immunol. 77: 171-176.
McKinney, D. M., S. Southwood, D. Hinz, C. Oseroff, C. S. Arlehamn, V. Schulten, R. Taplitz, D. Broide, W. A. Hanekom, T. J. Scriba, et al. 2013. A strategy to determine HLA class II restriction broadly covering the DR, DP, and DQ allelic variants most commonly expressed in the general population. Immunogenetics 65: 357-370.
Han, A., J. Glanville, L. Hansmann, and M. M. Davis. 2014. Linking T-cell receptor sequence to functional phenotype at the single-cell level. [Published erratum appears in 2015 Nat. Biotechnol. 33: 210.] Nat. Biotechnol. 32: 684-692.
Texier, C., S. Pouvelle, M. Busson, M. Hervé, D. Charron, A. Ménez, and B. Maillère. 2000. HLA-DR restricted peptide candidates for bee venom immunotherapy. J. Immunol. 164: 3177-3184.
Pancré, V., B. Georges, G. Angyalosi, F. Castelli, A. Delanoye, M. Delacre, E. Hachulla, B. Maillere, A. Bouzidi, and C. Auriault. 2002. Novel promiscuous HLA-DQ HIV Nef peptide that induces IFN-g-producing memory CD4+ T cells. Clin. Exp. Immunol. 129: 429-437.
Mannering, S. I., A. W. Purcell, M. C. Honeyman, J. McCluskey, and L. C. Harrison. 2003. Human T-cells recognise N-terminally Fmoc-modified peptide. Vaccine 21: 3638-3646.
Brezar, V., S. Culina, T. Østerbye, F. Guillonneau, G. Chiappetta, Y. Verdier, J. Vinh, F. S. Wong, S. Buus, and R. Mallone. 2011. T cells recognizing a peptide contaminant undetectable by mass spectrometry. PLoS One 6: E28866.
Seay, H. R., E. Yusko, S. J. Rothweiler, L. Zhang, A. L. Posgai, M. Campbell-Thompson, M. Vignali, R. O. Emerson, J. S. Kaddis, D. Ko, et al. 2016. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1: E88242.
Wang, P., J. Sidney, C. Dow, B. Mothé, A. Sette, and B. Peters. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4: E1000048.
Wang, P., J. Sidney, Y. Kim, A. Sette, O. Lund, M. Nielsen, and B. Peters. 2010. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11: 568.
Levisetti, M. G., A. Suri, S. J. Petzold, and E. R. Unanue. 2007. The insulinspecific T cells of nonobese diabetic mice recognize a weak MHC-binding segment in more than one form. J. Immunol. 178: 6051-6057.
Levisetti, M. G., D. M. Lewis, A. Suri, and E. R. Unanue. 2008. Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice. Diabetes 57: 1852-1860.
Abreu, J. R., S. Martina, A. A. Verrijn Stuart, Y. E. Fillié, K. L. Franken, J. W. Drijfhout, and B. O. Roep. 2012. CD8 T cell autoreactivity to preproinsulin epitopes with very low human leucocyte antigen class I binding affinity. Clin. Exp. Immunol. 170: 57-65.
Arif, S., F. Moore, K. Marks, T. Bouckenooghe, C. M. Dayan, R. Planas, M. Vives-Pi, J. Powrie, T. Tree, P. Marchetti, et al. 2011. Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated b-cell death. Diabetes 60: 2112-2119.
Arif, S., P. Leete, V. Nguyen, K. Marks, N. M. Nor, M. Estorninho, D. Kronenberg-Versteeg, P. J. Bingley, J. A. Todd, C. Guy, et al. 2014. Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 63: 3835-3845.
Arif, S., V. B. Gibson, V. Nguyen, P. J. Bingley, J. A. Todd, C. Guy, D. B. Dunger, C. M. Dayan, J. Powrie, A. Lorenc, and M. Peakman. 2017. b-cell specific T-lymphocyte response has a distinct inflammatory phenotype in children with Type 1 diabetes compared with adults. Diabet. Med. 34: 419-425.
Alhadj Ali, M., Y.-F. Liu, S. Arif, D. Tatovic, H. Shariff, V. B. Gibson, N. Yusuf, R. Baptista, M. Eichmann, N. Petrov, et al. 2017. Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci. Transl. Med. 9: Eaaf7779t.
Moon, J. J., H. H. Chu, M. Pepper, S. J. McSorley, S. C. Jameson, R. M. Kedl, and M. K. Jenkins. 2007. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27: 203-213.
Castelli, F. A., N. Szely, A. Olivain, N. Casartelli, C. Grygar, A. Schneider, A. Besse, Y. Levy, O. Schwartz, and B. Maillère. 2013. Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of preexisting peptide-specific T cells in healthy donors. J. Immunol. 190: 5757-5763.
Kwok, W. W., V. Tan, L. Gillette, C. T. Littell, M. A. Soltis, R. B. LaFond, J. Yang, E. A. James, and J. H. DeLong. 2012. Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. J. Immunol. 188: 2537-2544.
Uchtenhagen, H., C. Rims, G. Blahnik, I.-T. Chow, W. W. Kwok, J. H. Buckner, and E. A. James. 2016. Efficient ex vivo analysis of CD4+ T-cell responses using combinatorial HLA class II tetramer staining. Nat. Commun. 7: 12614.
Unanue, E. R., and X. Wan. 2019. The immunoreactive platform of the pancreatic islets influences the development of autoreactivity. Diabetes 68: 1544-1551.
Mohan, J. F., M. G. Levisetti, B. Calderon, J. W. Herzog, S. J. Petzold, and E. R. Unanue. 2010. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat. Immunol. 11: 350-354.
Mohan, J. F., S. J. Petzold, and E. R. Unanue. 2011. Register shifting of an insulin peptide-MHC complex allows diabetogenic T cells to escape thymic deletion. J. Exp. Med. 208: 2375-2383.
Wan, X., B. H. Zinselmeyer, P. N. Zakharov, A. N. Vomund, R. Taniguchi, L. Santambrogio, M. S. Anderson, C. F. Lichti, and E. R. Unanue. 2018. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature 560: 107-111.