[en] Non-natural modifications are widely introduced into peptides to improve their therapeutic efficacy, but their impact on immunogenicity remains largely unknown. As the CD4 T-cell response is a key factor in triggering immunogenicity, we investigated the effect of introducing D-amino acids (Daa), amino isobutyric acid (Aib), N-methylation, Cα-methylation, reduced amide, and peptoid bonds into an immunoprevalent T-cell epitope on binding to a set of HLA-DR molecules, recognition, and priming of human T cells. Modifications are differentially accepted at multiple positions, but are all tolerated in the flanking regions. Introduction of Aib and Daa in the binding core had the most deleterious effect on binding to HLA-DR molecules and T-cell activation. Their introduction at the positions close to the P1 anchor residue abolished T-cell priming, suggesting they might be sufficient to dampen peptide immunogenicity. Other modifications led to variable effects on binding to HLA-DR molecules and T-cell reactivity, but none exhibited an increased ability to stimulate T cells. Altogether, non-natural modifications appear generally to diminish binding to HLA-DR molecules and hence T-cell stimulation. These data might guide the design of therapeutic peptides to make them less immunogenic.
Disciplines :
Immunology & infectious disease
Author, co-author :
Azam, Aurélien ; Sanofi, Biologics Research, Vitry-sur-Seine, France ; Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
Mallart, Sergio; Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
Illiano, Stephane; Sanofi R&D, Cardiovascular Diseases & Metabolism, Chilly-Mazarin, France
Duclos, Olivier; Sanofi R&D, Integrated Drug Discovery, Chilly-Mazarin, France
Prades, Catherine; Sanofi, Biologics Research, Vitry-sur-Seine, France
Maillère, Bernard; Université de Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé, SIMoS, Gif-sur-Yvette, France
Language :
English
Title :
Introduction of Non-natural Amino Acids Into T-Cell Epitopes to Mitigate Peptide-Specific T-Cell Responses.
Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, et al. THPdb: database of FDA-approved peptide and protein therapeutics. PLoS ONE. (2017) 12:e0181748. 10.1371/journal.pone.018174828759605
Gentilucci L, De Marco R, Cerisoli L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des. (2010) 16:3185–203. 10.2174/13816121079329255520687878
Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. (2012) 19:4451–61. 10.2174/092986712803251548
Dingman R, Balu-Iyer SV. Immunogenicity of protein pharmaceuticals. J Pharm Sci. (2019) 108:1637–54. 10.1016/j.xphs.2018.12.014
Jaton JC, Sela M. Role of optical configuration in the immunogenicity and specificity of synthetic antigens derived from multichain polyproline. J Biol Chem. (1968) 243:5616–26. 10.1016/S0021-9258(18)91912-55699055
Benkirane N, Friede M, Guichard G, Briand JP, Van Regenmortel MH, Muller S. Antigenicity and immunogenicity of modified synthetic peptides containing D-amino acid residues. Antibodies to a D-enantiomer do recognize the parent L-hexapeptide and reciprocally. J Biol Chem. (1993) 268:26279–85. 10.1016/S0021-9258(19)74312-98253750
Dintzis HM, Symer DE, Dintzis RZ, Zawadzke LE, Berg JM. A comparison of the immunogenicity of a pair of enantiomeric proteins. Proteins. (1993) 16:306–8. 10.1002/prot.3401603098346194
Maillère B, Mourier G, Cotton J, Herve M, Leroy S, Menez A. Probing immunogenicity of a T cell epitope by L-alanine and D-amino acid scanning. Mol Immunol. (1995) 32:1073–80. 10.1016/0161-5890(95)00073-98544857
Cotton J, Herve M, Pouvelle S, Maillère B, Menez A. Pseudopeptide ligands for MHC II-restricted T cells. Int Immunol. (1998) 10:159–66. 10.1093/intimm/10.2.1599533443
Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. (2013) 149:534–55. 10.1016/j.clim.2013.09.00624263283
Koren E, De Groot AS, Jawa V, Beck KD, Boone T, Rivera D, et al. Clinical validation of the in silico prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol. (2007) 124:26–32. 10.1016/j.clim.2007.03.54417490912
Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices [see comments]. Nat Biotechnol. (1999) 17:555–61. 10.1038/9858
Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. (2008) 4:e1000048. 10.1371/journal.pcbi.100004818389056
Hill CM, Liu A, Marshall KW, Mayer J, Jorgensen B, Yuan B, et al. Exploration of requirements for peptide binding to HLA DRB1*0101 and DRB1*0401. J Immunol. (1994) 152:2890–8.8144889
Gurunath R, Beena TK, Adiga PR, Balaram P. Enhancing peptide antigenicity by helix stabilization. FEBS Lett. (1995) 361:176–8. 10.1016/0014-5793.(95)00166-77535246
Bossus M, BenMohamed L, Londono A, Barbier B, Tartar A, Druilhe P, et al. Improved detection of human antibodies to a Plasmodium antigen using a peptide modified with Aib residues. J Pept Sci. (1997) 3:47–53. 10.1002/(sici)1099-1387(199701)3:1<47::aid-psc80>3.0.co;2-v9230470
de Haan EC, Wauben MH, Grosfeld-Stulemeyer MC, Kruijtzer JA, Liskamp RM, Moret EE. Major histocompatibility complex class II binding characteristics of peptoid-peptide hybrids. Bioorg Med Chem. (2002) 10:1939–45. 10.1016/S0968-0896(01)00434-511937352
Ettouati L, Salvi JP, Trescol-Biemont MC, Walchshofer N, Gerlier D, Rabourdin-Combe C, et al. Substitution of peptide bond 53-54 of HEL(52-61) with an ethylene bond rather than reduced peptide bond is tolerated by an MHC-II restricted T cell. Pept Res. (1996) 9:248–53.9000251
Bastian M, Lozano JM, Patarroyo ME, Pluschke G, Daubenberger CA. Characterization of a reduced peptide bond analogue of a promiscuous CD4 T cell epitope derived from the Plasmodium falciparum malaria vaccine candidate merozoite surface protein 1. Mol Immunol. (2004) 41:775–84. 10.1016/j.molimm.2004.04.01915234557
Texier C, Pouvelle S, Busson M, Herve M, Charron D, Menez A, et al. HLA-DR restricted peptide candidates for bee venom immunotherapy. J Immunol. (2000) 164:3177–84. 10.4049/jimmunol.164.6.317710706708
Texier C, Pouvelle-Moratille S, Busson M, Charron D, Menez A, Maillère B. Complementarity and redundancy of the binding specificity of HLA-DRB1, -DRB3, -DRB4 and -DRB5 molecules. Eur J Immunol. (2001) 31:1837–46. 10.1002/1521-4141(200106)31:6<1837::AID-IMMU1837>3.0.CO;2-H11433380
Marshall KW, Liu AF, Canales J, Perahia B, Jorgensen B, Gantzos RD, et al. Role of the polymorphic residues in HLA-DR molecules in allele-specific binding of peptide ligands. J Immunol. (1994) 152:4946–57.8176213
Gelder CM, Welsh KI, Faith A, Lamb JR, Askonas BA. Human CD4+ T-cell repertoire of responses to influenza A virus hemagglutinin after recent natural infection. J Virol. (1995) 69:7497–506. 10.1128/JVI.69.12.7497-7506.19957494256
Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature. (1994) 368:215–21. 10.1038/368215a08145819
Hennecke J, Wiley DC. Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J Exp Med. (2002) 195:571–81. 10.1084/jem.2001119411877480
Cohen WM, Pouvelle-Moratille S, Wang XF, Farci S, Munier G, Charron D, et al. Scanning the HIV genome for CD4+ T cell epitopes restricted to HLA-DP4, the most prevalent HLA class II molecule. J Immunol. (2006) 176:5401–8. 10.4049/jimmunol.176.9.540116622007
Castelli FA, Leleu M, Pouvelle-Moratille S, Farci S, Zarour HM, Andrieu M, et al. Differential capacity of T cell priming in naive donors of promiscuous CD4+ T cell epitopes of HCV NS3 and Core proteins. Eur J Immunol. (2007) 37:1513–23. 10.1002/eji.20063678317492804
Castelli FA, Houitte D, Munier G, Szely N, Lecoq A, Briand JP, et al. Immunoprevalence of the CD4+ T-cell response to HIV Tat and Vpr proteins is provided by clustered and disperse epitopes, respectively. Eur J Immunol. (2008) 38:2821–31. 10.1002/eji.20073807218828138
Gallais Y, Sierocki R, Lhomme G, Sivelle C, Kiseljak D, Wurm F, et al. Large-scale mapping of the Ebola NP and GP proteins reveals multiple immunoprevalent and conserved CD4 T-cell epitopes. Cell Mol Immunol. (2020). 10.1038/s41423-020-0455-232398806
Chaux P, Vantomme V, Stroobant V, Thielemans K, Corthals J, Luiten R, et al. Identification of MAGE-3 epitopes presented by HLA-DR molecules to CD4(+) T lymphocytes. J Exp Med. (1999) 189:767–78. 10.1084/jem.189.5.76710049940
Wang XF, Kerzerho J, Adotevi O, Nuyttens H, Badoual C, Munier G, et al. Comprehensive analysis of HLA-DR- and HLA-DP4-restricted CD4+ T cell response specific for the tumor-shared antigen survivin in healthy donors and cancer patients. J Immunol. (2008) 181:431–9. 10.4049/jimmunol.181.1.43118566409
Hamze M, Meunier S, Karle A, Gdoura A, Goudet A, Szely N, et al. Characterization of CD4 T cell epitopes of infliximab and rituximab identified from healthy donors. Front Immunol. (2017) 8:500. 10.3389/fimmu.2017.0050028529511
Meunier S, Hamze M, Karle A, de Bourayne M, Gdoura A, Spindeldreher S, et al. Impact of human sequences in variable domains of therapeutic antibodies on the location of CD4 T-cell epitopes. Cell Mol Immunol. (2019) 17:656–8. 10.1038/s41423-019-0304-331659246
Castelli FA, Szely N, Olivain A, Casartelli N, Grygar C, Schneider A, et al. Hierarchy of CD4 T cell epitopes of the ANRS Lipo5 synthetic vaccine relies on the frequencies of pre-existing peptide-specific T cells in healthy donors. J Immunol. (2013) 190:5757–63. 10.4049/jimmunol.1300145
Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. (2007) 27:203–13. 10.1016/j.immuni.2007.07.007
Kwok WW, Tan V, Gillette L, Littell CT, Soltis MA, LaFond RB, et al. Frequency of epitope-specific naive CD4(+) T cells correlates with immunodominance in the human memory repertoire. J Immunol. (2012) 188:2537–44. 10.4049/jimmunol.1102190
King TP, Wade D, Coscia MR, Mitchell S, Kochoumian L, Merrifield B. Structure-immunogenicity relationship of melittin, its transposed analogues, and D-melittin. J Immunol. (1994) 153:1124–31.8027544
Zavala-Ruiz Z, Sundberg EJ, Stone JD, DeOliveira DB, Chan IC, Svendsen J, et al. Exploration of the P6/P7 region of the peptide-binding site of the human class II major histocompatability complex protein HLA-DR1. J Biol Chem. (2003) 278:44904–12. 10.1074/jbc.M30765220012952957
Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med. (1993) 178:27–47. 10.1084/jem.178.1.278315383
Aravinda S, Shamala N, Balaram P. Aib residues in peptaibiotics and synthetic sequences: analysis of nonhelical conformations. Chem Biodivers. (2008) 5:1238–62. 10.1002/cbdv.20089011218649312
Karosiene E, Rasmussen M, Blicher T, Lund O, Buus S, Nielsen M. NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics. (2013) 65:711–24. 10.1007/s00251-013-0720-y23900783
Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43, D405–412. 10.1093/nar/gku93825300482
Stern LJ, Wiley DC. The human class II MHC protein HLA-DR1 assembles as empty alpha beta heterodimers in the absence of antigenic peptide. Cell. (1992) 68:465–77. 10.1016/0092-8674.(92)90184-E1371238
Jardetzky TS, Gorga JC, Busch R, Rothbard J, Strominger JL, Wiley DC. Peptide binding to HLA-DR1: a peptide with most residues substituted to alanine retains MHC binding. Embo J. (1990) 9:1797–803. 10.1002/j.1460-2075.1990.tb08304.x2189723
Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, et al. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. (1994) 153:1665–73.7519208
Geluk A, van Meijgaarden KE, Southwood S, Oseroff C, Drijfhout JW, de Vries RR, et al. HLA-DR3 molecules can bind peptides carrying two alternative specific submotifs. J Immunol. (1994) 152:5742–8.8207204
Davenport MP, Quinn CL, Chicz RM, Green BN, Willis AC, Lane WS, et al. Naturally processed peptides from two disease-resistance-associated HLA- DR13 alleles show related sequence motifs and the effects of the dimorphism at position 86 of the HLA-DR beta chain. Proc Natl Acad Sci USA. (1995) 92:6567–71. 10.1073/pnas.92.14.65677604034