Alternate base; Normalization; Spectrum; Pisot number; Parry alternate base
Abstract :
[en] The first aim of this article is to give information about the algebraic properties of alternate bases determining sofic systems. We show that a necessary condition is that the product d of the bases is an algebraic integer and all of the bases belong to the algebraic field Q(d). On the other hand, we also give a sufficient condition: if the product d of the bases is a Pisot number and all the bases belong to Q(d), then the system associated with the alternate base is sofic. The second aim of this paper is to provide an analogy of Frougny's result concerning normalization of real bases representations. We show that given an alternate base such that the product d of the bases is a Pisot number and all the bases belong to Q(d), the normalization function is computable by a finite Büchi automaton, and furthermore, we effectively construct such an automaton. An important tool in our study is the spectrum of numeration systems associated with alternate bases. The spectrum of a real number d>1 and an alphabet A of integers was introduced by Erdös et al. For our purposes, we use a generalized concept for a complex number d and a complex alphabet A and study its topological properties.
Akiyama, S., Komornik, V., Discrete spectra and Pisot numbers. J. Number Theory 133:2 (2013), 375–390.
Bertrand, A., Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris Sér. A-B 285:6 (1977), A419–A421.
Bertrand-Mathis, A., Développement en base θ; répartition modulo un de la suite (xθn)n≥0; langages codés et θ-shift. Bull. Soc. Math. Fr. 114:3 (1986), 271–323.
Caalima, J., Demegillo, S., Beta Cantor series expansion and admissible sequences. Acta Polytech. 60:3 (2020), 214–224.
Cantor, G., Über die einfachen Zahlensysteme. Z. Math. Phys. 14 (1869), 121–128.
Charlier, É., Cisternino, C., Expansions in Cantor real bases. Monatshefte Math. 195 (2021), 585–610.
Charlier, É., Cisternino, C., Dajani, K., Dynamical behavior of alternate base expansions. Ergod. Theory Dyn. Syst. 43:3 (2023), 827–860.
Cisternino, C., Combinatorial properties of lazy expansions in Cantor real bases. arXiv:2202.00437, 2021.
Erdős, P., Joó, I., Komornik, V., Characterization of the unique expansions 1=∑i=1∞q−ni and related problems. Bull. Soc. Math. Fr. 118:3 (1990), 377–390.
Feng, D.-J., On the topology of polynomials with bounded integer coefficients. J. Eur. Math. Soc. 18:1 (2016), 181–193.
Frougny, C., Representations of numbers and finite automata. Math. Syst. Theory 25:1 (1992), 37–60.
Frougny, C., Pelantová, E., Two applications of the spectrum of numbers. Acta Math. Hung. 156:2 (2018), 391–407.
Hare, K.G., Masáková, Z., Vávra, T., On the spectra of Pisot-cyclotomic numbers. Lett. Math. Phys. 108:7 (2018), 1729–1756.
Komornik, V., Lu, J., Zou, Y., Expansions in multiple bases over general alphabets. Acta Math. Hungar. 166 (2022), 481–506.