Adembri, C., Venturi, L., & De Gaudio, R. A. (2002). Propofol is neuroprotective in a rat model of focal cerebral ischemia when administered after the insult. Critical Care Medicine, 30(12), A24–A24.
Adembri, C., Venturi, L., & Pellegrini-Giampietro, D. E. (2007). Neuroprotective Effects of Propofol in Acute Cerebral Injury. CNS Drug Reviews, 13(3), 333–351. doi:10.1111/j.1527-3458.2007.00015.x
Adembri, C., Venturi, L., Tani, A., Chiarugi, A., Gramigni, E., Cozzi, A., Pancani, T., De Gaudio, R. A., & Pellegrini-Giampietro, D. E. (2006). Neuroprotective Effects of Propofol in Models of Cerebral Ischemia: Inhibition of Mitochondrial Swelling as a Possible Mechanism. Anesthesiology, 104(1), 80–89. doi:10.1097/00000542-200601000-00014
Akeju, O., Kim, S.-E., Vazquez, R., Rhee, J., Pavone, K. J., Hobbs, L. E., Purdon, P. L., & Brown, E. N. (2016). Spatiotemporal Dynamics of Dexmedetomidine-Induced Electroencephalogram Oscillations. PloS One, 11(10), e0163431–e0163431. doi:10.1371/journal.pone.0163431
Akeju, O., Pavone, K. J., Westover, M. B., Vazquez, R., Prerau, M. J., Harrell, P. G., Hartnack, K. E., Rhee, J., Sampson, A. L., Habeeb, K., Gao, L., Pierce, E. T., Walsh, J. L., Brown, E. N., & Purdon, P. L. (2014). A comparison of propofol- and dexmedetomidine-induced electroencephalogram dynamics using spectral and coherence analysis. Anesthesiology, 121(5), 978–989. doi:10.1097/ALN.0000000000000419
Akeju, O., Song, A. H., Hamilos, A. E., Pavone, K. J., Flores, F. J., Brown, E. N., & Purdon, P. L. (2016). Electroencephalogram signatures of ketamine anesthesia-induced unconsciousness. Clinical Neurophysiology, 127(6), 2414–2422. doi:10.1016/j.clinph.2016.03.005
Albanèse, J., Arnaud, S., Rey, M., Thomachot, L., Alliez, B., & Martin, C. (1997). Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology, 87(6), 1328–1334. doi:10.1097/00000542-199712000-00011
Albanese, J., Viviand, X., Potie, F. F., Rey, M., Alliez, B., Martin, C., Albanèse, J., Viviand, X., Potie, F. F., Rey, M., Alliez, B., & Martin, C. (1999). Sufentanil, fentanyl, and alfentanil in head trauma patients: A study on cerebral hemodynamics. Critical Care Medicine, 27(2), 407–411. doi:10.1097/00003246-199902000-00050
Albert, S. G., & Sitaula, S. (2020). Etomidate, Adrenal Insufficiency and Mortality Associated With Severity of Illness: A Meta-Analysis. Journal of Intensive Care Medicine, epub ahead of print-epub ahead of print. doi:10.1177/0885066620957596
Arroliga, A. C., Shehab, N., McCarthy, K., & Gonzales, J. P. (2004). Relationship of continuous infusion lorazepam to serum propylene glycol concentration in critically ill adults*. Critical Care Medicine, 32(8), 1709–1714. doi:10.1097/01.CCM.0000134831.40466.39
Artru, A. A., Lam, A. M., Johnson, J. O., & Sperry, R. J. (1997). Intracranial pressure, middle cerebral artery flow velocity, and plasma inorganic fluoride concentrations in neurosurgical patients receiving sevoflurane or isoflurane. Anesthesia and Analgesia, 85(3), 587–592. doi:10.1097/00000539-199709000-00019
Arulvelan, A., Manikandan, S., Easwer, H. V., & Krishnakumar, K. (2015). Effect of Loading Dose of Dexmedetomidine on Dynamic Cerebral Blood Flow Autoregulation in Patients With Intracranial Glial Neoplasms. Journal of Neurosurgical Anesthesiology, 27(4), 289–294. doi:10.1097/ANA.0000000000000159
Avidan, M. S., Maybrier, H. R., Abdallah, A. B., Jacobsohn, E., Vlisides, P. E., Pryor, K. O., Veselis, R. A., Grocott, H. P., Emmert, D. A., Rogers, E. M., Downey, R. J., Yulico, H., Noh, G. J., Lee, Y. H., Waszynski, C. M., Arya, V. K., Pagel, P. S., Hudetz, J. A., Muench, M. R., … Yulico, H. (2017). Intraoperative ketamine for prevention of postoperative delirium or pain after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. The Lancet, 390(10091), 267–275. doi:10.1016/S0140-6736(17)31467-8
Barnes, B. J., Gerst, C., Smith, J. R., Terrell, A. R., & Mullins, M. E. (2006). Osmol Gap as a Surrogate Marker for Serum Propylene Glycol Concentrations in Patients Receiving Lorazepam for Sedation. Pharmacotherapy, 26(1), 23–33. doi:10.1592/phco.2006.26.1.23
Barr, J., Fraser, G. L., Puntillo, K., Ely, E. W., Gélinas, C., Dasta, J. F., Davidson, J. E., Devlin, J. W., Kress, J. P., Joffe, A. M., Coursin, D. B., Herr, D. L., Tung, A., Robinson, B. R. H., Fontaine, D. K., Ramsay, M. A., Riker, R. R., Sessler, C. N., Pun, B., … Jaeschke, R. (2013). Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Critical Care Medicine, 41(1), 263–306. doi:10.1097/CCM.0b013e3182783b72
Barrett, W., Buxhoeveden, M., & Dhillon, S. (2020). Ketamine: a versatile tool for anesthesia and analgesia. Current Opinion in Anaesthesiology, 33(5), 633–638. doi:10.1097/ACO.0000000000000916
Bauer, T. M., Ritz, R., Haberthür, C., Haefeli, W. E., Scollo-Lavizzari, G., Ha, H. R., Hunkeler, W., & Sleight, A. J. (1995). Prolonged sedation due to accumulation of conjugated metabolites of midazolam. The Lancet, 346(8968), 145–147. doi:10.1016/S0140-6736(95)91209-6
Bedforth, N. M., Girling, K. J., Skinner, H. J., & Mahajan, R. P. (2001). Effects of desflurane on cerebral autoregulation. British Journal of Anaesthesia, 87(2), 193–197. doi:10.1093/bja/87.2.193
Bhutta, A. T., Schmitz, M. L., Swearingen, C., James, L. P., Wardbegnoche, W. L., Lindquist, D. M., Glasier, C. M., Tuzcu, V., Prodhan, P., Dyamenahalli, U., Imamura, M., Jaquiss, R. D. B., & Anand, K. J. S. (2012). Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: A pilot randomized, double-blind, placebo-controlled trial. Pediatric Critical Care Medicine, 13(3), 328–337. doi:10.1097/PCC.0b013e31822f18f9
Bonhomme, V., Boveroux, P., Vanhaudenhuyse, A., Hans, P., Brichant, J.F., & Jaquet, O., et al. (2011). Linking sleep and general anesthesia mechanisms: This is no walkover. Acta Anaesthesiologica Belgica 62(3), 161–171.
Bonhomme, V., Maquet, P., Phillips, C., Plenevaux, A., Hans, P., Luxen, A., Lamy, M., & Laureys, S. (2008). The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesthesia and Analgesia, 106(3), 899–909. doi:10.1213/ane.0b013e3181619685
Bonhomme, V., Staquet, C., Montupil, J., Defresne, A., Kirsch, M., Martial, C., Vanhaudenhuyse, A., Chatelle, C., Larroque, S. K., Raimondo, F., Demertzi, A., Bodart, O., Laureys, S., & Gosseries, O. (2019). General Anesthesia: A Probe to Explore Consciousness. Frontiers in Systems Neuroscience, 13, 36–36. doi:10.3389/fnsys.2019.00036
Bonhomme, V., Vanhaudenhuyse, A., Demertzi, A., Bruno, M. A., Jaquet, O., Bahri, M. A., Plenevaux, A., Boly, M., Boveroux, P., Soddu, A., Brichant, J. F., Maquet, P., & Laureys, S. (2016). Resting-state Network-specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers. Anesthesiology, 125(5), 873–888. doi:10.1097/ALN.0000000000001275
Bösel, J., Purrucker, J. C., Nowak, F., Renzland, J., Schiller, P., Pérez, E. B., Poli, S., Brunn, B., Hacke, W., & Steiner, T. (2012). Volatile isoflurane sedation in cerebrovascular intensive care patients using AnaConDa(®): effects on cerebral oxygenation, circulation, and pressure. Intensive Care Medicine, 38(12), 1955–1964. doi:10.1007/s00134-012-2708-8
Bosnjak, Z. J., Logan, S., Liu, Y., & Bai, X. (2016). Recent Insights Into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies. Anesthesia and Analgesia, 123(5), 1286–1296. doi:10.1213/ANE.0000000000001544
Bouajram, R. H., Bhatt, K., Croci, R., Baumgartner, L., Puntillo, K., Ramsay, J., & Thompson, A. (2019). Incidence of Dexmedetomidine Withdrawal in Adult Critically Ill Patients: A Pilot Study. Critical Care Explorations, 1(8), e0035–e0035. doi:10.1097/CCE.0000000000000035
Bray, R. J. (1998). Propofol infusion syndrome in children. Paediatric Anaesthesia, 8(6), 491–499. doi:10.1046/j.1460-9592.1998.00282.x
Breen, D., Wilmer, A., Bodenham, A., Bach, V., Bonde, J., Kessler, P., Albrecht, S., & Shaikh, S. (2004). Offset of pharmacodynamic effects and safety of remifentanil in intensive care unit patients with various degrees of renal impairment. Critical Care (London, England), 8(1), R21–R30. doi:10.1186/cc2399
Brown, E. N., Pavone, K. J., & Naranjo, M. (2018). Multimodal general anesthesia: Theory and practice. Anesthesia and Analgesia, 127(5), 1246–1258.
Brummel, N. E., & Girard, T. D. (2013). Preventing Delirium in the Intensive Care Unit. Critical Care Clinics, 29(1), 51–65. doi:10.1016/j.ccc.2012.10.007
Cai, Y., Xu, H., Yan, J., Zhang, L., & Lu, Y. (2014). Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Molecular Medicine Reports, 9(5), 1542–1550. doi:10.3892/mmr.2014.2034
Callaway, J. K., Jones, N. C., Royse, A. G., & Royse, C. F. (2012). Sevoflurane anesthesia does not impair acquisition learning or memory in the Morris water maze in young adult and aged rats. Anesthesiology, 117(5), 1091–1101. doi:10.1097/ALN.0b013e31826cb228
Camps, A. S., Sanchez-Izquierdo Riera, J. A., Vazquez, D. T., Sa Borges, M., Rodriguez, J. P., & Lopez, E. A. (2000). Midazolam and 2% propofol in long-term sedation of traumatized, critically ill patients: Efficacy and safety comparison. Critical Care Medicine, 28(11), 3612–3619. doi:10.1097/00003246-200011000-00009
Caraiscos, V. B., Newell, J. G., You-Ten, K. E., Elliott, E. M., Rosahl, T. W., Wafford, K. A., MacDonald, J. F., & Orser, B. A. (2004). Selective enhancement of tonic GABAergic inhibition in murine hippocampal neurons by low concentrations of the volatile anesthetic isoflurane. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 24(39), 8454–8458. doi:10.1523/JNEUROSCI.2063-04.2004
Carollo, D. S., Nossaman, B. D., & Ramadhyani, U. (2008). Dexmedetomidine: a review of clinical applications. Current Opinion in Anaesthesiology, 21(4), 457–461. doi:10.1097/ACO.0b013e328305e3ef
Castillo, R. L., Ibacache, M., Cortinez, I., Carrasco-Pozo, C., Farias, J. G., Carrasco, R. A., Vargas-Errazuriz, P., Ramos, D., Benavente, R., Torres, D. H., & Mendez, A. (2019). Dexmedetomidine Improves Cardiovascular and Ventilatory Outcomes in Critically Ill Patients: Basic and Clinical Approaches. Frontiers in Pharmacology, 10, 1641–1641. doi:10.3389/fphar.2019.01641
Chauvin, M., Ferrier, C., Haberer, J. P., Spielvogel, C., Lebrault, C., Levron, J. C., & Duvaldestin, P. (1989). Sufentanil pharmacokinetics in patients with cirrhosis. Anesthesia and Analgesia, 68(1), 1–4. doi:10.1213/00000539-198901000-00001
Chesnut, R. M., Temkin, N., Carney, N., Dikmen, S., Rondina, C., Videtta, W., Petroni, G., Lujan, S., Pridgeon, J., Barber, J., Machamer, J., Chaddock, K., Celix, J. M., Cherner, M., & Hendrix, T. (2012). A trial of intracranial-pressure monitoring in traumatic brain injury. The New England Journal of Medicine, 367(26), 2471–2481. doi:10.1056/NEJMoa1207363
Citerio, G., & Cormio, M. (2003). Sedation in neurointensive care: advances in understanding and practice. Current Opinion in Critical Care, 9(2), 120–126. doi:10.1097/00075198-200304000-00007
Conti, A., Iacopino, D. G., Fodale, V., Micalizzi, S., Penna, O., & Santamaria, L. B. (2006). Cerebral haemodynamic changes during propofol-remifentanil or sevoflurane anaesthesia: Transcranial Doppler study under bispectral index monitoring. British Journal of Anaesthesia, 97(3), 333–339. doi:10.1093/bja/ael169
Cotev, S., & Shalit, M. N. (1975). Effects of diazepam on cerebral blood flow and oxygen uptake after head injury. Anesthesiology, 43(1), 117–122. doi:10.1097/00000542-197507000-00029
Cruickshank, M., Henderson, L., MacLennan, G., Fraser, C., Campbell, M., Blackwood, B., Gordon, A., & Brazzelli, M. (2016). Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technology Assessment (Winchester, England), 20(25), 1–117. doi:10.3310/hta20250
Culley, D. J., Baxter, M. G., Crosby, C. A., Yukhananov, R., & Crosby, G. (2004). Impaired acquisition of spatial memory 2 weeks after isoflurane and isoflurane-nitrous oxide anesthesia in aged rats. Anesthesia and Analgesia, 99(5), 1393–1397. doi:10.1213/01.ANE.0000135408.14319.CC
Culley, D. J., & Crosby, G. (2008). Nitrous oxide in neuroanesthesia: tried and true or toxin? In Anesthesiology (Vol. 108, Issue 4, pp. 553–554). doi:10.1097/ALN.0b013e318167a7fb
Dawidowicz, A. L., Kalitynski, R., & Fijalkowska, A. (2003). Free and bound propofol concentrations in human cerebrospinal fluid. British Journal of Clinical Pharmacology, 56(5), 545–550. doi:10.1046/j.1365-2125.2003.01920.x
De Nadal, M., Munar, F., Poca, A., Sahuquillo, J., Garnacho, A., & Rosselló, J. (2000). Cerebral hemodynamic effects of morphine and fentanyl in patients with severe head injury: Absence of correlation to cerebral autoregulation. Anesthesiology, 92(1), 11–19. doi:10.1097/00000542-200001000-00008
Devlin, J. W., Lau, A. K., & Tanios, M. A. (2005). Propofol-Associated Hypertriglyceridemia and Pancreatitis in the Intensive Care Unit: An Analysis of Frequency and Risk Factors. Pharmacotherapy, 25(10), 1348–1352. doi:10.1592/phco.2005.25.10.1348
Devlin, J. W., Mallow-Corbett, S., & Riker, R. R. (2010). Adverse drug events associated with the use of analgesics, sedatives, and antipsychotics in the intensive care unit. Critical Care Medicine, 38(6 SUPPL.), S231–S243. doi:10.1097/CCM.0b013e3181de125a
Doi, M., Hirata, N., Suzuki, T., Morisaki, H., Morimatsu, H., & Sakamoto, A. (2020). Safety and efficacy of remimazolam in induction and maintenance of general anesthesia in high-risk surgical patients (ASA Class III): results of a multicenter, randomized, double-blind, parallel-group comparative trial. Journal of Anesthesia, 34(4), 491–501. doi:10.1007/s00540-020-02776-w
Domino, E. F., Zsigmond, E. K., Domino, L. E., Domino, K. E., Kothary, S. P., & Domino, S. E. (1982). Plasma Levels of Ketamine and Two of Its Metabolites in Surgical Patients Using a Gas Chromatographic Mass Fragmentographic Assay. Anesthesia and Analgesia, 61(2), 87–92.
Driesen, N. R., McCarthy, G., Bhagwagar, Z., Bloch, M., Calhoun, V., D’Souza, D. C., Gueorguieva, R., He, G., Ramachandran, R., Suckow, R. F., Anticevic, A., Morgan, P. T., & Krystal, J. H. (2013). Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Molecular Psychiatry, 18(11), 1199–1204. doi:10.1038/mp.2012.194
Drummond, John C, Dao, A. V., Roth, D. M., Cheng, C.-R., Atwater, B. I., Minokadeh, A., Pasco, L. C., & Patel, P. M. (2008). Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology, 108(2), 225–232. doi:10.1097/01.anes.0000299576.00302.4c
Drummond, John Cornell, & Sturaitis, M. K. (2010). Brain tissue oxygenation during dexmedetomidine administration in surgical patients with neurovascular injuries. Journal of Neurosurgical Anesthesiology, 22(4), 336–341. doi:10.1097/ANA.0b013e3181e4b7e3
Dwyer, R., Bennett, H. L., Eger, E. I., & Heilbron, D. (1992). Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology, 77(5), 888–898. doi:10.1097/00000542-199211000-00009
Eger, E. I. (1994). New inhaled anesthetics. Anesthesiology, 80(4), 906–922. doi:10.1097/00000542-199404000-00024
Eger, E. I. (1998). Current and future perspectives on inhaled anesthetics. Pharmacotherapy, 18(5), 895–910.
Engelhard, K., Werner, C., Möllenberg, O., & Kochs, E. (2001). S(+)-ketamine/propofol maintain dynamic cerebrovascular autoregulation in humans. Canadian Journal of Anaesthesia = Journal Canadien d’anesthesie, 48(10), 1034–1039. doi:10.1007/BF03016597
Fang, Y., & Wang, X. (2015). Ketamine for the treatment of refractory status epilepticus. Seizure, 30, 14–20. doi:10.1016/j.seizure.2015.05.010
Farag, E., Kot, M., Podolyak, A., Argalious, M., Deogaonkar, M., Mascha, E. J., Xu, Z., Katzan, I., & Ebrahim, Z. (2017). The relative effects of dexmedetomidine and propofol on cerebral blood flow velocity and regional brain oxygenation: A randomised noninferiority trial. European Journal of Anaesthesiology, 34(11), 732–739. doi:10.1097/EJA.0000000000000662
Flexman, A. M., Wong, H., Riggs, K. W., Shih, T., Garcia, P. A., Vacas, S., & Talke, P. O. (2014). Enzyme-inducing anticonvulsants increase plasma clearance of dexmedetomidine: a pharmacokinetic and pharmacodynamic study. Anesthesiology, 120(5), 1118–1125. doi:10.1097/ALN.0000000000000141
Fodale, V., & La Monaca, E. (2008). Propofol Infusion Syndrome. Drug Safety, 31(4), 293–303. doi:10.2165/00002018-200831040-00003
Fraga, M., Rama-Maceiras, P., Rodiño, S., Aymerich, H., Pose, P., & Belda, J. (2003). The effects of isoflurane and desflurane on intracranial pressure, cerebral perfusion pressure, and cerebral arteriovenous oxygen content difference in normocapnic patients with supratentorial brain tumors. Anesthesiology, 98(5), 1085–1090. doi:10.1097/00000542-200305000-00010
Fraser, G. L., Devlin, J. W., Worby, C. P., Alhazzani, W., Barr, J., Dasta, J. F., Kress, J. P., Davidson, J. E., & Spencer, F. A. (2013). Benzodiazepine Versus Nonbenzodiazepine-Based Sedation for Mechanically Ventilated, Critically Ill Adults. Critical Care Medicine, 41(9 SUPPL.1), S30–S38. doi:10.1097/CCM.0b013e3182a16898
Frolich, M. A., Banks, C., & Ness, T. J. (2017). The Effect of Sedation on Cortical Activation: A Randomized Study Comparing the Effects of Sedation With Midazolam, Propofol, and Dexmedetomidine on Auditory Processing. Anesthesia and Analgesia, 124(5), 1603–1610. doi:10.1213/ANE.0000000000002021
Funai, Y., Pickering, A. E., Uta, D., Nishikawa, K., Mori, T., Asada, A., Imoto, K., & Furue, H. (2014). Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain, 155(3), 617–628. doi:10.1016/j.pain.2013.12.018
Fung, E. L. W., & Fung, B. B. H. (2017). Review and update of the Hong Kong Epilepsy Guideline on status epilepticus. Hong Kong Medical Journal, 23(1), 67–73. https://doi.org/10.12809/hkmj166025
Gaspard, N., Foreman, B., Judd, L. M., Brenton, J. N., Nathan, B. R., McCoy, B. M., Al-Otaibi, A., Kilbride, R., Fernández, I. S., Mendoza, L., Samuel, S., Zakaria, A., Kalamangalam, G. P., Legros, B., Szaflarski, J. P., Loddenkemper, T., Hahn, C. D., Goodkin, H. P., Claassen, J., … Laroche, S. M. (2013). Intravenous ketamine for the treatment of refractory status epilepticus: A retrospective multicenter study. Epilepsia, 54(8), 1498–1503. doi:10.1111/epi.12247
Gelb, A. W. (1995). Effects of propofol on neuronal activity in the area postrema of the rat. Anesthesiology, 83, A752–A752.
Gerlach, A. T., Blais, D. M., Jones, G. M., Burcham, P. K., Stawicki, S. P., Cook, C. H., & Murphy, C. V. (2016). Predictors of dexmedetomidine-associated hypotension in critically ill patients. International Journal of Critical Illness and Injury Science, 6(3), 109–114. doi:10.4103/2229-5151.190656
Ghori, K. A., Harmon, D. C., Elashaal, A., Butler, M., Walsh, F., O’Sullivan, M. G. J., & Shorten, G. D. (2007). Effect of midazolam versus propofol sedation on markers of neurological injury and outcome after isolated severe head injury: a pilot study. Critical Care and Resuscitation : Journal of the Australasian Academy of Critical Care Medicine, 9(2), 166–171.
Glauser, T., Shinnar, S., Gloss, D., Alldredge, B., Arya, R., Bainbridge, J., Bare, M., Bleck, T., Edwin Dodson, W., Garrity, L., Jagoda, A., Lowenstein, D., Pellock, J., Riviello, J., Sloan, E., & Treiman, D. M. (2016). Evidence-based guideline: Treatment of convulsive status epilepticus in children and adults: Report of the guideline committee of the American epilepsy society. Epilepsy Currents, 16(1), 48–61. doi:10.5698/1535-7597-16.1.48
Grof, T. M., & Bledsoe, K. A. (2010). Evaluating the use of dexmedetomidine in neurocritical care patients. Neurocritical Care, 12(3), 356–361. doi:10.1007/s12028-008-9156-x
Gu, J. wen, Yang, T., Kuang, Y. qin, Huang, H. dong, Kong, B., Shu, H. feng, Yu, S. xun, & Zhang, J. hai. (2014). Comparison of the safety and efficacy of propofol with midazolam for sedation of patients with severe traumatic brain injury: A meta-analysis. Journal of Critical Care, 29(2), 287–290. doi:10.1016/j.jcrc.2013.10.021
Guldenmund, P., Vanhaudenhuyse, A., Sanders, R. D., Sleigh, J., Bruno, M. A., Demertzi, A., Bahri, M. A., Jaquet, O., Sanfilippo, J., Baquero, K., Boly, M., Brichant, J. F., Laureys, S., & Bonhomme, V. (2017). Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. British Journal of Anaesthesia, 119(4), 674–684. doi:10.1093/bja/aex257
Guo, X.-N., & Ma, X. (2020). The Effects of Propofol on Autophagy. DNA and Cell Biology, 39(2), 197–209. doi:10.1089/dna.2019.4745
Gupta, A., Dalvi, N. P., & Tendolkar, B. A. (2017). Comparison between intranasal dexmedetomidine and intranasal midazolam as premedication for brain magnetic resonance imaging in pediatric patients: A prospective randomized double blind trial. Journal of Anaesthesiology, Clinical Pharmacology, 33(2), 236–240. doi:10.4103/joacp.JOACP_204_16
Hannivoort, L. N., Eleveld, D. J., Proost, J. H., Reyntjens, K. M. E. M., Absalom, A. R., Vereecke, H. E. M., & Struys, M. M. R. F. (2015). Development of an Optimized Pharmacokinetic Model of Dexmedetomidine Using Target-controlled Infusion in Healthy Volunteers. Anesthesiology, 123(2), 357–367. doi:10.1097/ALN.0000000000000740
Hans, P., & Bonhomme, V. (2003). Muscle relaxants in neurosurgical anaesthesia: A critical appraisal. European Journal of Anaesthesiology, 20(8), 600–605. doi:10.1017/S0265021503000966
Hashmi, J. A., Loggia, M. L., Khan, S., Gao, L., Kim, J., Napadow, V., Brown, E. N., & Akeju, O. (2017). Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain Networks. Anesthesiology, 126(3), 419–430. doi:10.1097/ALN.0000000000001509
Hawryluk, G. W. J., Aguilera, S., Buki, A., Bulger, E., Citerio, G., Cooper, D. J., Arrastia, R. D., Diringer, M., Figaji, A., Gao, G., Geocadin, R., Ghajar, J., Harris, O., Hoffer, A., Hutchinson, P., Joseph, M., Kitagawa, R., Manley, G., Mayer, S., … Chesnut, R. M. (2019). A management algorithm for patients with intracranial pressure monitoring: the Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Medicine, 45 (12), 1783–1794. doi:10.1007/s00134-019-05805-9
Hayama, H. R., Drumheller, K. M., Mastromonaco, M., Reist, C., Cahill, L. F., & Alkire, Michael. T. (2012). Event-related Functional Magnetic Resonance Imaging of a Low Dose of Dexmedetomidine that Impairs Long-term Memory. Anesthesiology, 117(5), 981–995. doi:10.1097/ALN.0b013e31826be467
Hayashida, K., Umegaki, T., Ikai, H., Murakami, G., Nishimura, M., & Imanaka, Y. (2016). The relationship between sedative drug utilization and outcomes in critically ill patients undergoing mechanical ventilation. Journal of Anesthesia, 30(5), 763–769. doi:10.1007/s00540-016-2196-z
Hayes, A. G., & Tyers, M. B. (1983). Determination of receptors that mediate opiate side effects in the mouse. British Journal of Pharmacology, 79(3), 731–736. doi:10.1111/j.1476-5381.1983.tb10011.x
Hendrickx, J., Poelaert, J., & De Wolf, A. (2018). Sedation with inhaled agents in the ICU: what are we waiting for? Journal of Clinical Monitoring and Computing, 32(4), 593–594. doi:10.1007/s10877-018-0172-x
Hernández-Durán, S., Salfelder, C., Schaeper, J., Moerer, O., Rohde, V., Mielke, D., & von der Brelie, C. (2020). Mechanical Ventilation, Sedation and Neuromonitoring of Patients with Aneurysmal Subarachnoid Hemorrhage in Germany: Results of a Nationwide Survey. Neurocritical Care, epub ahead of print-epub ahead of print. doi:10.1007/s12028-020-01029-8
Hertle, D. N., Dreier, J. P., Woitzik, J., Hartings, J. A., Bullock, R., Okonkwo, D. O., Shutter, L. A., Vidgeon, S., Strong, A. J., Kowoll, C., Dohmen, C., Diedler, J., Veltkamp, R., Bruckner, T., Unterberg, A. W., & Sakowitz, O. W. (2012). Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain, 135(8), 2390–2398. doi:10.1093/brain/aws152
Herzog-Niescery, J., Seipp, H.-M., Weber, T. P., & Bellgardt, M. (2018). Inhaled anesthetic agent sedation in the ICU and trace gas concentrations: a review. Journal of Clinical Monitoring and Computing, 32(4), 667–675. doi:10.1007/s10877-017-0055-6
Himmelseher, S., & Durieux, M. E. (2005). Revising a dogma: ketamine for patients with neurological injury? Anesthesia and Analgesia, 101(2), 524–534, table of contents. doi:10.1213/01.ANE.0000160585.43587.5B
Ho, K. M., & Ng, J. Y. (2008). The use of propofol for medium and long-term sedation in critically ill adult patients: A meta-analysis. Intensive Care Medicine, 34(11), 1969–1979. doi:10.1007/s00134-008-1186-5
Hoffman, W. E., Charbel, F. T., Edelman, G., & Ausman, J. I. (1998). Thiopental and desflurane treatment for brain protection. Neurosurgery, 43(5), 1050–1053. doi:10.1097/00006123-199811000-00026
Höfler, J., Rohracher, A., Kalss, G., Zimmermann, G., Dobesberger, J., Pilz, G., Leitinger, M., Kuchukhidze, G., Butz, K., Taylor, A., Novak, H., & Trinka, E. (2016). (S)-Ketamine in Refractory and Super-Refractory Status Epilepticus: A Retrospective Study. CNS Drugs, 30(9), 869–876. doi:10.1007/s40263-016-0371-2
Höfler, J., & Trinka, E. (2018). Intravenous ketamine in status epilepticus. Epilepsia, 59, 198–206. doi:10.1111/epi.14480
Höflich, A., Hahn, A., Küblböck, M., Kranz, G. S., Vanicek, T., Ganger, S., Spies, M., Windischberger, C., Kasper, S., Winkler, D., & Lanzenberger, R. (2017). Ketamine-dependent neuronal activation in healthy volunteers. Brain Structure & Function, 222(3), 1533–1542. doi:10.1007/s00429-016-1291-0
Höflich, A., Hahn, A., Küblböck, M., Kranz, G. S., Vanicek, T., Windischberger, C., Saria, A., Kasper, S., Winkler, D., & Lanzenberger, R. (2015). Ketamine-induced modulation of the thalamo-cortical network in healthy volunteers as a model for schizophrenia. International Journal of Neuropsychopharmacology, 18(9), 1–11. doi:10.1093/ijnp/pyv040
Horinek, E. L., Kiser, T. H., Fish, D. N., & MacLaren, R. (2009). Propylene glycol accumulation in critically ill patients receiving continuous intravenous lorazepam infusions. The Annals of Pharmacotherapy, 43 (12), 1964–1971. doi:10.1345/aph.1M313
Hotz, M. A., Ritz, R., Linder, L., Scollo-Lavizzari, G., & Haefeli, W. E. (2000). Auditory and electroencephalographic effects of midazolam and α-hydroxy-midazolam in healthy subjects. British Journal of Clinical Pharmacology, 49(1), 72–79. doi:10.1046/j.1365-2125.2000.00104.x
Hovaguimian, F., Tschopp, C., Beck-Schimmer, B., & Puhan, M. (2018). Intraoperative ketamine administration to prevent delirium or postoperative cognitive dysfunction: A systematic review and meta-analysis. Acta Anaesthesiologica Scandinavica, 62(9), 1182–1193. doi:10.1111/aas.13168
Hu, X., Wang, J., Zhang, Q., Duan, X., Chen, Z., & Zhang, Y. (2016). Postconditioning with sevoflurane ameliorates spatial learning and memory deficit after hemorrhage shock and resuscitation in rats. The Journal of Surgical Research, 206(2), 307–315. doi:10.1016/j.jss.2016.08.026
Hudetz, J. A., Patterson, K. M., Iqbal, Z., Gandhi, S. D., Byrne, A. J., Hudetz, A. G., Warltier, D. C., & Pagel, P. S. (2009). Ketamine Attenuates Delirium After Cardiac Surgery With Cardiopulmonary Bypass. Journal of Cardiothoracic and Vascular Anesthesia, 23(5), 651–657. doi:10.1053/j.jvca.2008.12.021
Hulsman, N., Hollmann, M. W., & Preckel, B. (2018). Newer propofol, ketamine, and etomidate derivatives and delivery systems relevant to anesthesia practice. Best Practice & Research. Clinical Anaesthesiology, 32(2), 213–221. doi:10.1016/j.bpa.2018.08.002
Humble, S. S., Wilson, L. D., Leath, T. C., Marshall, M. D., Sun, D. Z., Pandharipande, P. P., & Patel, M. B. (2016). ICU sedation with dexmedetomidine after severe traumatic brain injury. Brain Injury, 30 (10), 1266–1270. doi:10.1080/02699052.2016.1187289
Hutchens, M. P., Memtsoudis, S., & Sadovnikoff, N. (2006). Propofol for Sedation in Neuro-Intensive Care. Neurocritical Care, 4(1), 054–062. doi:10.1385/ncc:4:1:054
Iirola, T, Ihmsen, H., Laitio, R., Kentala, E., Aantaa, R., Kurvinen, J.-P., Scheinin, M., Schwilden, H., Schüttler, J., & Olkkola, K. T. (2012). Population pharmacokinetics of dexmedetomidine during long-term sedation in intensive care patients. British Journal of Anaesthesia, 108(3), 460–468. doi:10.1093/bja/aer441
Iirola, Timo, Vilo, S., Manner, T., Aantaa, R., Lahtinen, M., Scheinin, M., & Olkkola, K. T. (2011). Bioavailability of dexmedetomidine after intranasal administration. European Journal of Clinical Pharmacology, 67(8), 825–831. doi:10.1007/s00228-011-1002-y
Jansen, G. F., van Praagh, B. H., Kedaria, M. B., & Odoom, J. A. (1999). Jugular bulb oxygen saturation during propofol and isoflurane/nitrous oxide anesthesia in patients undergoing brain tumor surgery. Anesthesia and Analgesia, 89(2), 358–363. doi:10.1097/00000539-199908000-00021
Jevtovic-Todorovic, V., Absalom, A. R., Blomgren, K., Brambrink, A., Crosby, G., Culley, D. J., Fiskum, G., Giffard, R. G., Herold, K. F., Loepke, A. W., Ma, D., Orser, B. A., Planel, E., Slikker, W., Soriano, S. G., Stratmann, G., Vutskits, L., Xie, Z., & Hemmings, H. C. (2013). Anaesthetic neurotoxicity and neuroplasticity: An expert group report and statement based on the BJA Salzburg Seminar. British Journal of Anaesthesia, 111(2), 143–151. doi:10.1093/bja/aet177
Jonsson, M. M., Lindahl, S. G. E., & Eriksson, L. I. (2005). Effect of Propofol on Carotid Body Chemosensitivity and Cholinergic Chemotransduction. Anesthesiology, 102(1), 110–116. doi:10.1097/00000542-200501000-00019
Juul, N., Morris, G. F., Marshall, S. B., & Marshall, L. F. (2000). Neuromuscular blocking agents in neurointensive care. Acta Neurochirurgica. Supplement, 76, 467–470. doi:10.1007/978-3-7091-6346-7_97
Kabara, S., Hirota, K., Hashiba, E., Yoshioka, H., Kudo, T., Sato, T., & Matsuki, A. (2001). Comparison of relaxant effects of propofol on methacholine-induced bronchoconstriction in dogs with and without vagotomy. British Journal of Anaesthesia, 86(2), 249–253. doi:10.1093/bja/86.2.249
Kadoi, Y., Saito, S., Kawauchi, C., Hinohara, H., & Kunimoto, F. (2008). Comparative effects of propofol vs dexmedetomidine on cerebrovascular carbon dioxide reactivity in patients with septic shock. British Journal of Anaesthesia, 100(2), 224–229. doi:10.1093/bja/aem343
Kaisti, K. K., Langsjo, J. W., Aalto, S., Oikonen, V., Sipila, H., Teras, M., Hinkka, S., Metsahonkala, L., & Scheinin, H. (2003). Effects of sevoflurane, propofol and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology, 99(3), 603–613. doi:10.1097/00000542-200309000-00015
Kalant, H. (1977). Comparative aspects of tolerance to, and dependence on, alcohol, barbiturates and opiates. Advances in Experimental Medicine and Biology, 85B, 169–186. doi:10.1007/978-1-4615-9038-5_12
Kallionpää, R. E., Scheinin, A., Kallionpää, R. A., Sandman, N., Kallioinen, M., Laitio, R., Laitio, T., Kaskinoro, K., Kuusela, T., Revonsuo, A., Scheinin, H., & Valli, K. (2018). Spoken words are processed during dexmedetomidine-induced unresponsiveness. British Journal of Anaesthesia, 121(1), 270–280. doi:10.1016/j.bja.2018.04.032
Kamp, J., Jonkman, K., van Velzen, M., Aarts, L., Niesters, M., Dahan, A., & Olofsen, E. (2020). Pharmacokinetics of ketamine and its major metabolites norketamine, hydroxynorketamine, and dehydronorketamine: a model-based analysis. British Journal of Anaesthesia, epub ahead of print-epub ahead of print. doi:10.1016/j.bja.2020.06.067
Kapila, A., Glass, P. S. A., Jacobs, J. R., Muir, K. T., Hermann, D. J., Shiraishi, M., Howell, S., & Smith, R. L. (1995). Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology, 83(5), 968–975. doi:10.1097/00000542-199511000-00009
Karabinis, A., Mandragos, K., Stergiopoulos, S., Komnos, A., Soukup, J., Speelberg, B., & Kirkham, A. J. T. (2004). Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [ISRCTN50308308]. Critical Care (London, England), 8(4), R268-80. doi:10.1186/cc2896
Kawazoe, Y., Miyamoto, K., Morimoto, T., Yamamoto, T., Fuke, A., Hashimoto, A., Koami, H., Beppu, S., Katayama, Y., Itoh, M., Ohta, Y., & Yamamura, H. (2017). Effect of Dexmedetomidine on Mortality and Ventilator-Free Days in Patients Requiring Mechanical Ventilation With Sepsis: A Randomized Clinical Trial. JAMA, 317 (13), 1321–1328. doi:10.1001/jama.2017.2088
Kaye, A. D., Kaye, A., Kucera, I. J., Heavner, J., Gelb, A., Anwar, M., Duban, M., Arif, A. S., Craen, R., Chang, C.-T., Trillo, R., & Hoffman, M. (2004). The comparative effects of desflurane and isoflurane on lumbar cerebrospinal fluid pressure in patients undergoing craniotomy for supratentorial tumors. Anesthesia and Analgesia, 98(4), 1127–1132. doi:10.1213/01.ane.0000105862.78906.3d
Ke, X., Ding, Y., Xu, K., He, H., Wang, D., Deng, X., Zhang, X., Zhou, Y., Zhou, C., Liu, Y., Ning, Y., & Fan, N. (2018). The profile of cognitive impairments in chronic ketamine users. Psychiatry Research, 266, 124–131. doi:10.1016/j.psychres.2018.05.050
Kim, H. Y., Lee, J. E., Kim, H. Y., & Kim, J. (2017). Volatile sedation in the intensive care unit: A systematic review and meta-analysis. Medicine, 96 (49), e8976–e 8976. doi:10.1097/MD.0000000000008976
Kim, D. D., & Prasad, A. N. (2020). Clinical and radiologic features of pediatric opioid use‐associated neurotoxicity with cerebellar edema (POUNCE) syndrome. Neurology, 94 (16), 710–712. doi:10.1212/WNL.0000000000009293
Kokkinou, M., Ashok, A. H., & Howes, O. D. (2018). The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Molecular Psychiatry, 23(1), 59–69. doi:10.1038/mp.2017.190
Kokubun, H., Jin, H., Komita, M., & Aoe, T. (2020). Conflicting Actions of Inhalational Anesthetics, Neurotoxicity and Neuroprotection, Mediated by the Unfolded Protein Response. International Journal of Molecular Sciences, 21(2). doi:10.3390/ijms21020450
Komita, M., Jin, H., & Aoe, T. (2013). The effect of endoplasmic reticulum stress on neurotoxicity caused by inhaled anesthetics. Anesthesia and Analgesia, 117(5), 1197–1204. doi:10.1213/ANE.0b013e3182a74773
Kong, K. L., Willatts, S. M., & Prys-Roberts, C. (1989). Isoflurane compared with midazolam for sedation in the intensive care unit. British Medical Journal, 298 (6683), 1277–1280. doi:10.1136/bmj.298.6683.1277
Kotani, Y., Nakajima, Y., Hasegawa, T., Satoh, M., Nagase, H., Shimazawa, M., Yoshimura, S., Iwama, T., & Hara, H. (2008). Propofol exerts greater neuroprotection with disodium edetate than without it. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 28(2), 354–366. doi:10.1038/sj.jcbfm.9600532
Kraguljac, N. V., Frölich, M. A., Tran, S., White, D. M., Nichols, N., Barton-McArdle, A., Reid, M. A., Bolding, M. S., & Lahti, A. C. (2017). Ketamine modulates hippocampal neurochemistry and functional connectivity: a combined magnetic resonance spectroscopy and resting-state fMRI study in healthy volunteers. Molecular Psychiatry, 22(4), 562–569. doi:10.1038/mp.2016.122
Laaksonen, L., Kallioinen, M., Långsjö, J., Laitio, T., Scheinin, A., Scheinin, J., Kaisti, K., Maksimow, A., Kallionpää, R. E., Rajala, V., Johansson, J., Kantonen, O., Nyman, M., Sirén, S., Valli, K., Revonsuo, A., Solin, O., Vahlberg, T., Alkire, M., & Scheinin, H. (2018). Comparative effects of dexmedetomidine, propofol, sevoflurane, and S-ketamine on regional cerebral glucose metabolism in humans: a positron emission tomography study. British Journal of Anaesthesia, 121(1), 281–290. doi:10.1016/j.bja.2018.04.008
Långsjö, J. W., Salmi, E., Kaisti, K. K., Aalto, S., Hinkka, S., Aantaa, R., Oikonen, V., Viljanen, T., Kurki, T., Silvanto, M., & Scheinin, H. (2004). Effects of subanesthetic ketamine on regional cerebral glucose metabolism in humans. Anesthesiology, 100(5), 1065–1071. doi:10.1097/00000542-200405000-00006
Lavand’homme, P., & Steyaert, A. (2017). Opioid-free anesthesia opioid side effects: Tolerance and hyperalgesia. Best Practice and Research: Clinical Anaesthesiology, 31(4), 487–498. doi:10.1016/j.bpa.2017.05.003
Lee, U., Ku, S., Noh, G., Baek, S., Choi, B., & Mashour, G. A. (2013). Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology, 118(6), 1264–1275. doi:10.1097/ALN.0b013e31829103f5
Liu, Jianhui, Li, Y., Xia, X., Yang, X., Zhao, R., Peer, J., Wang, H., Tong, Z., Gao, F., Lin, H., Wu, B., Huang, Y., & Zheng, J. C. (2019). Propofol reduces microglia activation and neurotoxicity through inhibition of extracellular vesicle release. Journal of Neuroimmunology, 333, 476962–476962. doi:10.1016/j.jneuroim.2019.05.003
Liu, Jia, Zhang, J., & Wang, L. N. (2018). Gamma aminobutyric acid (GABA) receptor agonists for acute stroke. Cochrane Database of Systematic Reviews, 10 (10), CD009622–CD009622. doi:10.1002/14651858.CD009622.pub5
Lu, S., Liao, L., Zhang, B., Yan, W., Chen, L., Yan, H., Guo, L., Lu, S., Xiong, K., & Yan, J. (2019). Antioxidant cascades confer neuroprotection in ethanol, morphine, and methamphetamine preconditioning. Neurochemistry International, 131, 104540–104540. doi:10.1016/j.neuint.2019.104540
Lynch, E. P., Lazor, M. A., Gellis, J. E., Orav, J., Goldman, L., & Marcantonio, E. R. (1998). The of impact postoperative pain on the development of postoperative delirium. Anesthesia and Analgesia, 86(4), 781–785. doi:10.1097/00000539-199804000-00019
Lyon, R., Feiner, J., & Lieberman, J. A. (2005). Progressive suppression of motor evoked potentials during general anesthesia: the phenomenon of “anesthetic fade”. Journal of Neurosurgical Anesthesiology, 17(1), 13–19.
Magarey, J. M. (2001). Propofol or midazolam - which is best for the sedation of adult ventilated patients in intensive care units? A systematic review. Australian Critical Care, 14(4), 147–154. doi:10.1016/S1036-7314(05)80056-6
Manatpon, P., & Kofke, W. A. (2018). Toxicity of inhaled agents after prolonged administration. Journal of Clinical Monitoring and Computing, 32(4), 651–666. doi:10.1007/s10877-017-0077-0
Marklund, N. (2017). The Neurological Wake-up Test-A Role in Neurocritical Care Monitoring of Traumatic Brain Injury Patients? Frontiers in Neurology, 8, 540–540. doi:10.3389/fneur.2017.00540
Marty, J., Gauzit, R., Lefevre, P., Couderc, E., Farinotti, R., Henzel, C., & Desmonts, J. M. (1986). Effects of diazepam and midazolam on baroreflex control of heart rate and on sympathetic activity in humans. Anesthesia and Analgesia, 65(2), 113–119.
Matta, B. F., Heath, K. J., Tipping, K., & Summors, A. C. (1999). Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology, 91(3), 677–680. doi:10.1097/00000542-199909000-00019
Matta, B. F., Lam, A. M., Strebel, S., & Mayberg, T. S. (1995). Cerebral pressure autoregulation and carbon dioxide reactivity during propofol-induced EEG suppression. British Journal of Anaesthesia, 74(2), 159–163. doi:10.1093/bja/74.2.159
Matta, B. F., Mayberg, T. S., & Lam, A. M. (1995). Direct cerebrovasodilatory effects of halothane, isoflurane, and desflurane during propofol-induced isoelectric electroencephalogram in humans. Anesthesiology, 83(5), 980–985. doi:10.1097/00000542-199511000-00011
Mayberg, T. S., Lam, A. M., Matta, B. F., Domino, K. B., & Winn, H. R. (1995). Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy. Anesthesia and Analgesia, 81(1), 84–89. doi:10.1097/00000539-199507000-00017
Mazoit, J. X., Sandouk, P., Zetlaoui, P., & Scherrmann, J. M. (1987). Pharmacokinetics of unchanged morphine in normal and cirrhotic subjects. Anesthesia and Analgesia, 66(4), 293–298. doi:10.1213/00000539-198704000-00001
Meierkord, H., Boon, P., Engelsen, B., Göcke, K., Shorvon, S., Tinuper, P., Holtkamp, M., & European Federation of Neurological Societies. (2010). EFNS guideline on the management of status epilepticus in adults. European Journal of Neurology, 17(3), 348–355. doi:10.1111/j.1468-1331.2009.02917.x
Meiser, A., Sirtl, C., Bellgardt, M., Lohmann, S., Garthoff, A., Kaiser, J., Hügler, P., & Laubenthal, H. J. (2003). Desflurane compared with propofol for postoperative sedation in the intensive care unit. British Journal of Anaesthesia, 90(3), 273–280. doi:10.1093/bja/aeg059
Mesnil, M., Capdevila, X., Bringuier, S., Trine, P. O., Falquet, Y., Charbit, J., Roustan, J. P., Chanques, G., & Jaber, S. (2011). Long-term sedation in intensive care unit: A randomized comparison between inhaled sevoflurane and intravenous propofol or midazolam. Intensive Care Medicine, 37(6), 933–941. doi:10.1007/s00134-011-2187-3
Mielck, F. Stephan. H., Buhre, W., Weyland, A., & Sonntag, H. (1998). Effects of 1 MAC desflurane on cerebral metabolism, blood flow and carbon dioxide reactivity in humans. British Journal of Anaesthesia, 81(2), 155–160. doi:10.1093/bja/81.2.155
Mielck, Frank, Stephan, H., Weyland, A., & Sonntag, H. (1999). Effects of one minimum alveolar anesthetic concentration sevoflurane on cerebral metabolism, blood flow, and CO2 reactivity in cardiac patients. Anesthesia and Analgesia, 89(2), 364–369. doi:10.1097/00000539-199908000-00022
Morrison, R. S., Magaziner, J., Gilbert, M., Koval, K. J., McLaughlin, M. A., Orosz, G., Strauss, E., & Siu, A. L. (2003). Relationship Between Pain and Opioid Analgesics on the Development of Delirium Following Hip Fracture. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(1), M76–M81. doi:10.1093/gerona/58.1.M76
Nagase, K., Iida, H., Ohata, H., & Dohi, S. (2001). Ketamine, not propofol, attenuates cerebrovascular response to carbon dioxide in humans with isoflurane anesthesia. Journal of Clinical Anesthesia, 13(8), 551–555. doi:10.1016/s0952-8180(01)00328-2
Nakayama, M., & Murray, P. A. (1999). Ketamine preserves and propofol potentiates hypoxic pulmonary vasoconstriction compared with the conscious state in chronically instrumented dogs. Anesthesiology, 91(3), 760–771. doi:10.1097/00000542-199909000-00029
Nelson, L. E., Lu, J., Guo, T., Saper, C. B., Franks, N. P., & Maze, M. (2003). The alpha 2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98(2), 428–436. doi:10.1097/00000542-200302000-00024
Ng, K. T., Shubash, C. J., & Chong, J. S. (2019). The effect of dexmedetomidine on delirium and agitation in patients in intensive care: systematic review and meta-analysis with trial sequential analysis. Anaesthesia, 74(3), 380–392. doi:10.1111/anae.14472
Ni, J., Wei, J., Yao, Y., Jiang, X., Luo, L., & Luo, D. (2015). Effect of dexmedetomidine on preventing postoperative agitation in children: a meta-analysis. PloS One, 10(5), e0128450–e0128450. doi:10.1371/journal.pone.0128450
Niesters, M., Khalili-Mahani, N., Martini, C., Aarts, L., van Gerven, J., van Buchem, M. a., Dahan, A., & Rombouts, S. (2012). Effect of subanesthetic ketamine on intrinsic functional brain connectivity: a placebo-controlled functional magnetic resonance imaging study in healthy male volunteers. Anesthesiology, 117(4), 868–877. doi:10.1097/ALN.0b013e31826a0db3
Oddo, M., Crippa, I. A., Mehta, S., Menon, D., Payen, J.-F., Taccone, F. S., & Citerio, G. (2016). Optimizing sedation in patients with acute brain injury. Critical Care (London, England), 20(1), 128–128. doi:10.1186/s13054-016-1294-5
Ogawa, Y., Iwasaki, K. I., Aoki, K., Gokan, D., Hirose, N., Kato, J., & Ogawa, S. (2010). The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation. Anesthesia and Analgesia, 111(5), 1279–1284. doi:10.1213/ANE.0b013e3181f42fc0
Ogawa, Y., Iwasaki, K., Aoki, K., Kojima, W., Kato, J., & Ogawa, S. (2008). Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology, 109(4), 642–650. doi:10.1097/ALN.0b013e3181862a33
Otterspoor, L. C., Kalkman, C. J., & Cremer, O. L. (2008). Update on the propofol infusion syndrome in ICU management of patients with head injury. Current Opinion in Anaesthesiology, 21(5), 544–551. doi:10.1097/ACO.0b013e32830f44fb
Pain, L., Gobaille, S., Schleef, C., Aunis, D., & Oberling, P. (2002). In vivo dopamine measurements in the nucleus accumbens after nonanesthetic and anesthetic doses of propofol in rats. Anesthesia and Analgesia, 95(4), 915–919. doi:10.1097/00000539-200210000-00022
Pandharipande, P. P., Sanders, R. D., Girard, T. D., McGrane, S., Thompson, J. L., Shintani, A. K., Herr, D. L., Maze, M., & Ely, E. W. (2010). Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Critical Care (London, England), 14(2), R38–R38. doi:10.1186/cc8916
Papazian, L., Albanèse, J., Thirion, X., Perrin, G., Durbec, O., & Martin, C. (1993). Effect of bolus doses of midazolam on intracranial pressure and cerebral perfusion pressure in patients with severe head injury. British Journal of Anaesthesia, 71(2), 267–271. doi:10.1093/bja/71.2.267
Patel, S. S., & Goa, K. L. (1996). Sevoflurane. Drugs, 51(4), 658–700. doi:10.2165/00003495-199651040-00009
Pavone, K. J., Cacchione, P. Z., Polomano, R. C., Winner, L., & Compton, P. (2018). Evaluating the use of dexmedetomidine for the reduction of delirium: An integrative review. Heart & Lung : The Journal of Critical Care, 47(6), 591–601. doi:10.1016/j.hrtlng.2018.08.007
Pentikäinen, P. J., Välisalmi, L., Himberg, J.-J., & Crevoisier, C. (1989). Pharmacokinetics of Midazolam Following Intravenous and Oral Administration in Patients with Chronic Liver Disease and in Healthy Subjects. The Journal of Clinical Pharmacology, 29(3), 272–277. doi:10.1002/j.1552-4604.1989.tb03327.x
Perbet, S., Bourdeaux, D., Sautou, V., Pereira, B., Chabanne, R., Constantin, J. M., Chopineau, J., & Bazin, J. E. (2014). A pharmacokinetic study of 48-hour sevoflurane inhalation using a disposable delivery system (AnaConDa®) in ICU patients. Minerva Anestesiologica, 80(6), 655–665.
Pereira, J. V., Sanjanwala, R. M., Mohammed, M. K., Le, M.-L., & Arora, R. C. (2020). Dexmedetomidine versus propofol sedation in reducing delirium among older adults in the ICU: A systematic review and meta-analysis. European Journal of Anaesthesiology, 37(2), 121–131. doi:10.1097/EJA.0000000000001131
Petersen, K. D., Landsfeldt, U., Cold, G. E., Petersen, C. B., Mau, S., Hauerberg, J., Holst, P., & Olsen, K. S. (2003). Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: A randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology, 98(2), 329–336. doi:10.1097/00000542-200302000-00010
Philipp, M., Brede, M., & Hein, L. (2002). Physiological significance of alpha (2)-adrenergic receptor subtype diversity: one receptor is not enough. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283(2), R287-95. doi:10.1152/ajpregu.00123.2002
Pohlman, A. S., Simpson, K. P., & Hall, J. B. (1994). Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: A prospective, randomized study. Critical Care Medicine, 22(8), 1241–1247. doi:10.1097/00003246-199408000-00007
Prielipp, R. C., Wall, M. H., Tobin, J. R., Groban, L., Cannon, M. A., Fahey, F. H., Gage, H. D., Stump, D. A., James, R. L., Bennett, J., & Butterworth, J. (2002). Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesthesia and Analgesia, 95(4), 1052–1059. doi:10.1097/00000539-200210000-00048
Purdon, P. L., Pierce, E. T., Mukamel, E. A., Prerau, M. J., Walsh, J. L., Wong, K. F. K., Salazar-Gomez, A. F., Harrell, P. G., Sampson, A. L., Cimenser, A., Ching, S., Kopell, N. J., Tavares-Stoeckel, C., Habeeb, K., Merhar, R., & Brown, E. N. (2013). Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proceedings of the National Academy of Sciences of the United States of America, 110 (12), E1142-51. doi:10.1073/pnas.1221180110
Purdon, P. L., Sampson, A., Pavone, K. J., & Brown, E. N. (2015). Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology, 123(4), 937–960. doi:10.1097/ALN.0000000000000841
Purrucker, J. C., Renzland, J., Uhlmann, L., Bruckner, T., Hacke, W., Steiner, T., & Bösel, J. (2015). Volatile sedation with sevoflurane in intensive care patients with acute stroke or subarachnoid haemorrhage using AnaConDa®: an observational study. British Journal of Anaesthesia, 114(6), 934–943. doi:10.1093/bja/aev070
Qiu, J., Zhao, L., Yang, Y., Zhang, J. han, Feng, Y., & Cheng, R. (2019). Effects of fentanyl for pain control and neuroprotection in very preterm newborns on mechanical ventilation. Journal of Maternal-Fetal and Neonatal Medicine, 32 (22), 3734–3740. doi:10.1080/14767058.2018.1471593
Radek, L., Kallionpää, R. E., Karvonen, M., Scheinin, A., Maksimow, A., Långsjö, J., Kaisti, K., Vahlberg, T., Revonsuo, A., Scheinin, H., & Valli, K. (2018). Dreaming and awareness during dexmedetomidine- and propofol-induced unresponsiveness. British Journal of Anaesthesia, 121(1), 260–269. doi:10.1016/j.bja.2018.03.014
Ramadan, A. M., & Mansour, I. A. (2020). Could ketamine be the answer to treating treatment-resistant major depressive disorder? General Psychiatry, 33(5), e100227–e100227. doi:10.1136/gpsych-2020-100227
Rappaport, B. A., Suresh, S., Hertz, S., Evers, A. S., & Orser, B. A. (2015). Anesthetic neurotoxicity- -clinical implications of animal models. The New England Journal of Medicine, 372(9), 796–797. doi:10.1056/NEJMp1414786
Rhoney, D. H., & Parker D., J. (2001). Use of sedative and analgesic agents in neurotrauma patients: Effects on cerebral physiology. Neurological Research, 23 (2–3), 237–259. doi:10.1179/016164101101198398
Roberts, R. J., Barletta, J. F., Fong, J. J., Schumaker, G., Kuper, P. J., Papadopoulos, S., Yogaratnam, D., Kendall, E., Xamplas, R., Gerlach, A. T., Szumita, P. M., Anger, K. E., Arpino, P. A., Voils, S. A., Grgurich, P., Ruthazer, R., & Devlin, J. W. (2009). Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Critical Care (London, England), 13(5), R169–R169. doi:10.1186/cc8145
Roberts, D. J., Hall, R. I., Kramer, A. H., Robertson, H. L., Gallagher, C. N., & Zygun, D. A. (2011). Sedation for critically ill adults with severe traumatic brain injury: A systematic review of randomized controlled trials. Critical Care Medicine, 39 (12), 2743–2751. doi:10.1097/CCM.0b013e318228236f
Roberts, D. J., Haroon, B., & Hall, R. I. (2012). Sedation for critically ill or injured adults in the intensive care unit: A shifting paradigm. In Drugs (Vol. 72, Issue 14, pp. 1881–1916). Springer. doi:10.2165/11636220-000000000-00000
Roberts, E. A., Spielberg, S. P., Goldbach, M., & Phillips, M. J. (1990). Phenobarbital hepatotoxicity in an 8-month-old infant. Journal of Hepatology, 10(2), 235–239. doi:10.1016/0168-8278(90)90058-y
Roberts, I., & Sydenham, E. (2012). Barbiturates for acute traumatic brain injury. The Cochrane Database of Systematic Reviews, 12, CD000033–CD000033. doi:10.1002/14651858.CD000033.pub2
Rohan, D., Buggy, D. J., Crowley, S., Ling, F. K. H., Gallagher, H., Regan, C., & Moriarty, D. C. (2005). Increased incidence of postoperative cognitive dysfunction 24 hr after minor surgery in the elderly. Canadian Journal of Anaesthesia = Journal Canadien d’anesthesie, 52(2), 137–142. doi:10.1007/BF03027718
Roujeau, J. C., Kelly, J. P., Naldi, L., Rzany, B., Stern, R. S., Anderson, T., Auquier, A., Bastuji-Garin, S., Correia, O., & Locati, F. (1995). Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. The New England Journal of Medicine, 333 (24), 1600–1607. doi:10.1056/NEJM199512143332404
Rundshagen, I., Schröder, T., Prichep, L. S., John, E. R., & Kox, W. J. (2004). Changes in cortical electrical activity during induction of anaesthesia with thiopental/fentanyl and tracheal intubation: a quantitative electroencephalographic analysis. British Journal of Anaesthesia, 92(1), 33–38. doi:10.1093/bja/aeh020
Sahinovic, M. M., Struys, M. M. R. F., & Absalom, A. R. (2018). Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clinical Pharmacokinetics, 57 (12), 1539–1558. doi:10.1007/s40262-018-0672-3
Sanchez-Izquierdo-Riera, J. A., Caballero-Cubedo, R. E., Perez-Vela, J. L., Ambros-Checa, A., Cantalapiedra-Santiago, J. A., & Alted-Lopez, E. (1998). Propofol Versus Midazolam. Anesthesia & Analgesia, 86(6), 1219–1224. doi:10.1213/00000539-199806000-00016
Sánchez-Porras, R., Zheng, Z., & Sakowitz, O. W. (2015a). Pharmacological modulation of spreading depolarizations. Acta Neurochirurgica. Supplement, 120, 153–157. doi:10.1007/978-3-319-04981-6_26
Sánchez-Porras, R., Zheng, Z., & Sakowitz, O. W. (2015b). Pharmacological modulation of spreading depolarizations. Acta Neurochirurgica. Supplement, 120, 153–157. doi:10.1007/978-3-319-04981-6_26
Sarasso, S., Boly, M., Napolitani, M., Gosseries, O., Charland-Verville, V., Casarotto, S., Rosanova, M., Casali, A. G., Brichant, J. F., Boveroux, P., Rex, S., Tononi, G., Laureys, S., & Massimini, M. (2015). Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Current Biology, 25 (23), 3099–3105. doi:10.1016/j.cub.2015.10.014
Schomer, K. J., Sebat, C. M., Adams, J. Y., Duby, J. J., Shahlaie, K., & Louie, E. L. (2019). Dexmedetomidine for Refractory Intracranial Hypertension. Journal of Intensive Care Medicine, 34(1), 62–66. doi:10.1177/0885066616689555
Schulte am Esch, J., Pfeifer, G., Thiemig, I., & Entzian, W. (1978). The influence of intravenous anaesthetic agents on primarily increased intracranial pressure. Acta Neurochirurgica, 45 (1–2), 15–25. doi:10.1007/BF01774380
Schüttler, J., Eisenried, A., Lerch, M., Fechner, J., Jeleazcov, C., & Ihmsen, H. (2020). Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers: Part I. Pharmacokinetics and Clinical Pharmacodynamics. Anesthesiology, 132(4), 636–651. doi:10.1097/ALN.0000000000003103
Shan, Y., Yang, F., Tang, Z., Bi, C., Sun, S., Zhang, Y., & Liu, H. (2018). Dexmedetomidine Ameliorates the Neurotoxicity of Sevoflurane on the Immature Brain Through the BMP/SMAD Signaling Pathway. Frontiers in Neuroscience, 12, 964–964. doi:10.3389/fnins.2018.00964
Skoglund, K., Enblad, P., & Marklund, N. (2013). Monitoring and Sedation Differences in the Management of Severe Head Injury and Subarachnoid Hemorrhage Among Neurocritical Care Centers. Journal of Neuroscience Nursing, 45(6), 360–368. doi:10.1097/JNN.0b013e3182a3cf4f
Skrobik, Y., Duprey, M. S., Hill, N. S., & Devlin, J. W. (2018). Low-Dose Nocturnal Dexmedetomidine Prevents ICU Delirium. A Randomized, Placebo-controlled Trial. American Journal of Respiratory and Critical Care Medicine, 197(9), 1147–1156. doi:10.1164/rccm.201710-1995OC
Sleigh, J., Pullon, R. M., Vlisides, P. E., & Warnaby, C. E. (2019). Electroencephalographic slow wave dynamics and loss of behavioural responsiveness induced by ketamine in human volunteers. British Journal of Anaesthesia, 123(5), 592–600. doi:10.1016/j.bja.2019.07.021
Sneyd, J. R., & Rigby-Jones, A. E. (2020). Remimazolam for anaesthesia or sedation. Current Opinion in Anaesthesiology, 33(4), 506–511. doi:10.1097/ACO.0000000000000877
Song, A. H., Kucyi, A., Napadow, V., Brown, E. N., Loggia, M. L., & Akeju, O. (2017). Pharmacological Modulation of Noradrenergic Arousal Circuitry Disrupts Functional Connectivity of the Locus Ceruleus in Humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 37 (29), 6938–6945. doi:10.1523/JNEUROSCI.0446-17.2017
Sperry, R. J., Bailey, P. L., Reichman, M. V., Peterson, J. C., Petersen, P. B., & Pace, N. L. (1992). Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology, 77(3), 416–420. doi:10.1097/00000542-199209000-00002
Steiner, L., Johnston, A. J., Chatfield, D., Czosnyka, M., Coleman, M. R., Coles, J. P., Gupta, A. K., Pickard, J. D., & Menon, D. K. (2003). The effects of large-dose propofol on cerebrovascular pressure autoregulation in head-injured patients. Anesthesia and Analgesia, 97, 572–576. doi:10.1213/01.ANE.0000070234.17226.B0
Strebel, S., Kaufmann, M., Guardiola, P. M., & Schaefer, H. G. (1994). Cerebral vasomotor responsiveness to carbon dioxide is preserved during propofol and midazolam anesthesia in humans. Anesthesia and Analgesia, 78(5), 884–888. doi:10.1213/00000539-199405000-00009
Sun, L., Guo, R., & Sun, L. (2014). Dexmedetomidine for preventing sevoflurane-related emergence agitation in children: a meta-analysis of randomized controlled trials. Acta Anaesthesiologica Scandinavica, 58(6), 642–650. doi:10.1111/aas.12292
Sun, Y., Jiang, M., Ji, Y., Sun, Y., Liu, Y., & Shen, W. (2019). Impact of postoperative dexmedetomidine infusion on incidence of delirium in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. Drug Design, Development and Therapy, 13, 2911–2922. doi:10.2147/DDDT.S208703
Swart, E. L., Zuideveld, K. P., De Jongh, J., Danhof, M., Thijs, L. G., & Strack van Schijndel, R. M. J. (2003). Comparative population pharmacokinetics of lorazepam and midazolam during long-term continuous infusion in critically ill patients. British Journal of Clinical Pharmacology, 57(2), 135–145. doi:10.1046/j.1365-2125.2003.01957.x
Takizuka, A., Minami, K., Uezono, Y., Horishita, T., Yokoyama, T., Shiraishi, M., Sakurai, T., Shigematsu, A., & Ueta, Y. (2007). Dexmedetomidine inhibits muscarinic type 3 receptors expressed in Xenopus oocytes and muscarine-induced intracellular Ca2+ elevation in cultured rat dorsal root ganglia cells. Naunyn-Schmiedeberg’s Archives of Pharmacology, 375(5), 293–301. doi:10.1007/s00210-007-0168-4
Talke, P., Caldwell, J., Dodsont, B., & Richardson, C. A. (1996). Desflurane and isoflurane increase lumbar cerebrospinal fluid pressure in normocapnic patients undergoing transsphenoidal hypophysectomy. Anesthesiology, 85(5), 999–1004. doi:10.1097/00000542-199611000-00006
Talke, P., Caldwell, J. E., & Richardson, C. A. (1999). Sevoflurane increases lumbar cerebrospinal fluid pressure in normocapnic patients undergoing transsphenoidal hypophysectomy. Anesthesiology, 91(1), 127–130. doi:10.1097/00000542-199907000-00020
Talke, P., Tong, C., Lee, H. W., Caldwell, J., Eisenach, J. C., & Richardson, C. A. (1997). Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesthesia and Analgesia, 85(2), 358–364. doi:10.1097/00000539-199708000-00021
Tanguy, M., Seguin, P., Laviolle, B., Bleichner, J. P., Morandi, X., & Malledant, Y. (2012). Cerebral microdialysis effects of propofol versus midazolam in severe traumatic brain injury. Journal of Neurotrauma, 29(6), 1105–1110. doi:10.1089/neu.2011.1817
Tateishi, A., Maekawa, T., Takeshita, H., & Wakuta, K. (1981). Diazepam and intracranial pressure. Anesthesiology, 54(4), 335–337. doi:10.1097/00000542-198104000-00016
Taves, D. R., Fry, B. W., Freeman, R. B., & Gillies, A. J. (1970). Toxicity following methoxyflurane anesthesia. II. Fluoride concentrations in nephrotoxicity. JAMA, 214(1), 91–95.
Theodore, D., & Mahanes, D. (2019). Barbiturate-induced dyskalaemia in patients with traumatic brain injury patient. BMJ Case Reports, 12(4), e228119–e228119. doi:10.1136/bcr-2018-228119
Tobias, J. D. (2000). Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Critical Care Medicine, 28(6), 2122–2132. doi:10.1097/00003246-200006000-00079
Tobias, J. D., Deshpande, J. K., Pietsch, J. B., Wheeler, T. J., & Gregory, D. F. (1995). Pentobarbital sedation for patients in the pediatric intensive care unit. Southern Medical Journal, 88(3), 290–294. doi:10.1097/00007611-199503000-00008
Torri, G. (2010). Inhalation anesthetics: a review. Minerva Anestesiologica, 76(3), 215–228.
van Oostrom, H., Stienen, P. J., Doornenbal, A., & Hellebrekers, L. J. (2010). The alpha (2)-adrenoceptor agonist dexmedetomidine suppresses memory formation only at doses attenuating the perception of sensory input. European Journal of Pharmacology, 629 (1–3), 58–62. doi:10.1016/j.ejphar.2009.11.062
Villa, F., Iacca, C., Molinari, A. F., Giussani, C., Aletti, G., Pesenti, A., & Citerio, G. (2012). Inhalation versus endovenous sedation in subarachnoid hemorrhage patients: effects on regional cerebral blood flow. Critical Care Medicine, 40 (10), 2797–2804. doi:10.1097/CCM.0b013e31825b8bc6
Vlisides, P. E., Bel-Bahar, T., Lee, U. C., Li, D., Kim, H., Janke, E., Tarnal, V., Pichurko, A. B., McKinney, A. M., Kunkler, B. S., Picton, P., & Mashour, G. A. (2017). Neurophysiologic Correlates of Ketamine Sedation and Anesthesia: A High-density Electroencephalography Study in Healthy Volunteers. Anesthesiology, 127(1), 58–69. doi:10.1097/ALN.0000000000001671
Vossler, D. G., Bainbridge, J. L., Boggs, J. G., Novotny, E. J., Loddenkemper, T., Faught, E., Amengual-Gual, M., Fischer, S. N., Gloss, D. S., Olson, D. M., Towne, A. R., Naritoku, D., & Welty, T. E. (2020). Treatment of Refractory Convulsive Status Epilepticus: A Comprehensive Review by the American Epilepsy Society Treatments Committee. Epilepsy Currents, 20(5), 245–264. doi:10.1177/1535759720928269
Wainsztein, N., & Rodríguez Lucci, F. (2018). Cortical Spreading Depression and Ischemia in Neurocritical Patients. Neurosurgery Clinics of North America, 29(2), 223–229. doi:10.1016/j.nec.2017.11.003
Walder, B., Elia, N., Henzi, I., Romand, J. R., & Tramèr, M. R. (2001). A lack of evidence of superiority of propofol versus midazolam for sedation in mechanically ventilated critically III patients: A qualitative and quantitative systematic review. Anesthesia and Analgesia, 92(4), 975–983. doi:10.1097/00000539-200104000-00033
Walsh, C. T. (2018). Propofol: Milk of Amnesia. Cell, 175(1), 10–13. doi:10.1016/j.cell.2018.08.031
Wang, Jing, Huang, J., Yang, S., Cui, C., Ye, L., Wang, S.-Y., Yang, G.-P., & Pei, Q. (2019). Pharmacokinetics and Safety of Esketamine in Chinese Patients Undergoing Painless Gastroscopy in Comparison with Ketamine: A Randomized, Open-Label Clinical Study. Drug Design, Development and Therapy, 13, 4135–4144. doi:10.2147/DDDT.S224553
Wang, X., Ji, J., Fen, L., & Wang, A. (2013). Effects of dexmedetomidine on cerebral blood flow in critically ill patients with or without traumatic brain injury: a prospective controlled trial. Brain Injury, 27 (13–14), 1617–1622. doi:10.3109/02699052.2013.831130
Wang, Jisung, Noh, G. J., Choi, B. M., Ku, S. W., Joo, P., Jung, W. S., Kim, S., & Lee, H. (2017). Suppressed neural complexity during ketamine- and propofol-induced unconsciousness. Neuroscience Letters, 653, 320–325. doi:10.1016/j.neulet.2017.05.045
Weerink, M. A. S., Struys, M. M. R. F., Hannivoort, L. N., Barends, C. R. M., Absalom, A. R., & Colin, P. (2017). Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clinical Pharmacokinetics, 56(8), 893–913. doi:10.1007/s40262-017-0507-7
Welch, T. P., Wallendorf, M. J., Kharasch, E. D., Leonard, J. R., Doctor, A., & Pineda, J. A. (2016). Fentanyl and Midazolam Are Ineffective in Reducing Episodic Intracranial Hypertension in Severe Pediatric Traumatic Brain Injury. Critical Care Medicine, 44(4), 809–818. doi:10.1097/CCM.0000000000001558
Wesolowski, A. M., Zaccagnino, M. P., Malapero, R. J., Kaye, A. D., & Urman, R. D. (2016). Remimazolam: Pharmacologic Considerations and Clinical Role in Anesthesiology. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(9), 1021–1027. doi:10.1002/phar.1806
Westmoreland, C. L., Hoke, J. F., Sebel, P. S., Hug, C. C., & Muir, K. T. (1993). Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology, 79(5), 893–903. doi:10.1097/00000542-199311000-00005
Whalen, F. X., Bacon, D. R., & Smith, H. M. (2005). Inhaled anesthetics: an historical overview. Best Practice & Research. Clinical Anaesthesiology, 19(3), 323–330. doi:10.1016/j.bpa.2005.02.001
Wilson, C., Canning, P., & Caravati, E. M. (2010). The abuse potential of propofol. Clinical Toxicology, 48(3), 165–170. doi:10.3109/15563651003757954
Wilson, K. C., Reardon, C., & Farber, H. W. (2000). Propylene glycol toxicity in a patient receiving intravenous diazepam [3]. New England Journal of Medicine, 343 (11), 815–815. doi:10.1056/NEJM200009143431115
Wu, G.-J., Chen, J.-T., Tsai, H.-C., Chen, T.-L., Liu, S.-H., & Chen, R.-M. (2017). Protection of Dexmedetomidine Against Ischemia/Reperfusion-Induced Apoptotic Insults to Neuronal Cells Occurs Via an Intrinsic Mitochondria-Dependent Pathway. Journal of Cellular Biochemistry, 118(9), 2635–2644. doi:10.1002/jcb.25847
Wu, X.-H., Cui, F., Zhang, C., Meng, Z.-T., Wang, D.-X., Ma, J., Wang, G.-F., Zhu, S.-N., & Ma, D. (2016). Low-dose Dexmedetomidine Improves Sleep Quality Pattern in Elderly Patients after Noncardiac Surgery in the Intensive Care Unit: A Pilot Randomized Controlled Trial. Anesthesiology, 125(5), 979–991. doi:10.1097/ALN.0000000000001325
Yahwak, J. A., Riker, R. R., Fraser, G. L., & Subak-Sharpe, S. (2008). Determination of a lorazepam dose threshold for using the osmol gap to monitor for propylene glycol toxicity. Pharmacotherapy, 28(8), 984–991. doi:10.1592/phco.28.8.984
Yan, J., & Jiang, H. (2014). Dual effects of ketamine: neurotoxicity versus neuroprotection in anesthesia for the developing brain. Journal of Neurosurgical Anesthesiology, 26(2), 155–160. doi:10.1097/ANA.0000000000000027
Yanay, O., Brogan, T. V., & Martin, L. D. (2004). Continuous pentobarbital infusion in children is associated with high rates of complications. Journal of Critical Care, 19(3), 174–178. doi:10.1016/j.jcrc.2004.07.008
Young-McCaughan, S., & Miaskowski, C. (2001). Definition of and mechanism for opioid-induced sedation. Pain Management Nursing, 2(3), 84–97. doi:10.1053/jpmn.2001.25012
Zeiler, F. A., Teitelbaum, J., West, M., & Gillman, L. M. (2014). The ketamine effect on ICP in traumatic brain injury. Neurocritical Care, 21(1), 163–173. doi:10.1007/s12028-013-9950-y
Zeiler, Frederick A. Teitelbaum. J., West, M., & Gillman, L. M. (2014). The ketamine effect on intracranial pressure in nontraumatic neurological illness. Journal of Critical Care, 29(6), 1096–1106. doi:10.1016/j.jcrc.2014.05.024
Zeiler, Frederick A., Zeiler, K. J., Teitelbaum, J., Gillman, L. M., & West, M. (2015). Modern Inhalational Anesthetics for Refractory Status Epilepticus. Canadian Journal of Neurological Sciences/Journal Canadien Des Sciences Neurologiques, 42(2), 106–115. doi:10.1017/cjn.2014.121
Zhang, L.-M., & Zhang, D.-X. (2019). The Dual Neuroprotective-Neurotoxic Effects of Sevoflurane After Hemorrhagic Shock Injury. The Journal of Surgical Research, 235, 591–599. doi:10.1016/j.jss.2018.10.046
Zhu, M., Wang, H., Zhu, A., Niu, K., & Wang, G. (2015). Meta-analysis of dexmedetomidine on emergence agitation and recovery profiles in children after sevoflurane anesthesia: different administration and different dosage. PloS One, 10(4), e0123728–e0123728. doi:10.1371/journal.pone.0123728