[en] Castration-resistant prostate cancer (CRPC) is incurable and remains a significant worldwide challenge (Oakes and Papa, 2015). Matched untargeted multi-level omic datasets may reveal biological changes driving CRPC, identifying novel biomarkers and/or therapeutic targets. Untargeted RNA sequencing, proteomics, and metabolomics were performed on xenografts derived from three independent sets of hormone naive and matched CRPC human cell line models of local, lymph node, and bone metastasis grown as murine orthografts. Collectively, we tested the feasibility of muti-omics analysis on models of CRPC in revealing pathways of interest for future validation investigation. Untargeted metabolomics revealed NAA and NAAG commonly accumulating in CRPC across three independent models and proteomics showed upregulation of related enzymes, namely N-acetylated alpha-linked acidic dipeptidases (FOLH1/NAALADL2). Based on pathway analysis integrating multiple omic levels, we hypothesize that increased NAA in CRPC may be due to upregulation of NAAG hydrolysis via NAALADLases providing a pool of acetyl Co-A for upregulated sphingolipid metabolism and a pool of glutamate and aspartate for nucleotide synthesis during tumor growth.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Salji, Mark J ; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Blomme, Arnaud ; Université de Liège - ULiège > Département de pharmacie ; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Däbritz, J Henry M; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Repiscak, Peter; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Lilla, Sergio; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Patel, Rachana; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Sumpton, David; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
van den Broek, Niels J F; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Daly, Ronan ; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Zanivan, Sara; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Leung, Hing Y ; Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, UK ; CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
Language :
English
Title :
Multi-omics & pathway analysis identify potential roles for tumor N-acetyl aspartate accumulation in murine models of castration-resistant prostate cancer.
We thank the Core Services and Advanced Technologies at the CRUK Beatson Institute, particularly the Metabolomics, Proteomics, RNA sequencing and Bioinformatics units. This work was supported by the Medical Research Council Clinical Research Training Fellowship awarded to MS ( MR/L017997/1 ) and CRUK Beatson Institute core funding ( C596/A31287 ) and CRUK core group awarded to HYL ( A15151 ) and SZ ( A29800 ).We thank the Core Services and Advanced Technologies at the CRUK Beatson Institute, particularly the Metabolomics, Proteomics, RNA sequencing and Bioinformatics units. This work was supported by the Medical Research Council Clinical Research Training Fellowship awarded to MS (MR/L017997/1) and CRUK Beatson Institute core funding (C596/A31287) and CRUK core group awarded to HYL (A15151) and SZ (A29800). MJS, AB, and HYL designed the study. MJS, HMD, SL, RP, DS, and NJFB performed the experiments. MJS, AB, HMD, PR, SL, DS, NJFB, SZ, and RD analyzed the data. MJS, AB, HMD, RD, SZ, and HYL interpreted the data. MJS and HYL wrote the manuscript and all authors reviewed the final manuscript. The authors declare no competing interests.
Baslow, M.H., Functions of N-Acetyl-l-Aspartate and N-Acetyl-l-Aspartylglutamate in the vertebrate brain. J. Neurochem. 75 (2002), 453–459, 10.1046/j.1471-4159.2000.0750453.x.
Berthois, Y., Katzenellenbogen, J.A., Katzenellenbogen, B.S., Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. U S A 83 (1986), 2496–2500, 10.1073/pnas.83.8.2496.
Blomme, A., Ford, C.A., Mui, E., Patel, R., Ntala, C., Jamieson, L.E., Planque, M., McGregor, G.H., Peixoto, P., Hervouet, E., et al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nat. Commun., 11, 2020, 2508, 10.1038/s41467-020-16126-7.
Boersema, P.J., Geiger, T., Wisniewski, J.R., Mann, M., Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood samples. Mol. Cell. Proteomics 12 (2013), 158–171, 10.1074/mcp.M112.023614.
Bogner-Strauss, J.G., N-acetylaspartate metabolism outside the brain: lipogenesis, histone acetylation, and cancer. Front. Endocrinol., 8, 2017, 240, 10.3389/fendo.2017.00240.
Davies, L.C., Rice, C.M., Palmieri, E.M., Taylor, P.R., Kuhns, D.B., McVicar, D.W., Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels. Nat. Commun., 8, 2017, 2074, 10.1038/s41467-017-02092-0.
Edden, R.A.E., Pomper, M.G., Barker, P.B., In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn. Reson. Med. 57 (2007), 977–982, 10.1002/mrm.21234.
Geng, H., Xue, C., Mendonca, J., Sun, X.-X., Liu, Q., Reardon, P.N., Chen, Y., Qian, K., Hua, V., Chen, A., et al. Interplay between hypoxia and androgen controls a metabolic switch conferring resistance to androgen/AR-targeted therapy. Nat. Commun., 9, 2018, 4972, 10.1038/s41467-018-07411-7.
Grasso, C.S., Wu, Y.-M., Robinson, D.R., Cao, X., Dhanasekaran, S.M., Khan, A.P., Quist, M.J., Jing, X., Lonigro, R.J., Brenner, J.C., et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 487 (2012), 239–243, 10.1038/nature11125.
Gucalp, A., Iyengar, N.M., Zhou, X.K., Giri, D.D., Falcone, D.J., Wang, H., Williams, S., Krasne, M.D., Yaghnam, I., Kunzel, B., et al. Periprostatic adipose inflammation is associated with high-grade prostate cancer. Prostate Cancer Prostatic Dis. 20 (2017), 418–423, 10.1038/pcan.2017.31.
Hieronymus, H., Schultz, N., Gopalan, A., Carver, B.S., Chang, M.T., Xiao, Y., Heguy, A., Huberman, K., Bernstein, M., Assel, M., et al. Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad. Sci. U S A 111 (2014), 11139–11144, 10.1073/pnas.1411446111.
Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., Kim, U., Chai, L.S., Kakati, S., Arya, S.K., Sandberg, A.A., The LNCaP cell line–a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37 (1980), 115–132.
Huber, K., Hofer, D.C., Trefely, S., Pelzmann, H.J., Madreiter-Sokolowski, C., Duta-Mare, M., Schlager, S., Trausinger, G., Stryeck, S., Graier, W.F., et al. N-acetylaspartate pathway is nutrient responsive and coordinates lipid and energy metabolism in brown adipocytes. Biochim. Biophys. Acta Mol. Cell Res. 1866 (2019), 337–348, 10.1016/j.bbamcr.2018.08.017.
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S.L., TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, 2013, R36, 10.1186/gb-2013-14-4-r36.
Komatsu, S., Hara, N., Ishizaki, F., Nishiyama, T., Takizawa, I., Isahaya, E., Kawasaki, T., Takahashi, K., Altered association of interleukin-6 with sex steroids in lipid metabolism disorder in men with prostate cancer receiving androgen deprivation therapy. Prostate 72 (2012), 1207–1213, 10.1002/pros.22471.
Korenchuk, S., Lehr, J.E., MClean, L., Lee, Y.G., Whitney, S., Vessella, R., Lin, D.L., Pienta, K.J., VCaP, a cell-based model system of human prostate cancer. In Vivo 15 (2001), 163–168.
Liu, Y., Beyer, A., Aebersold, R., On the dependency of cellular protein levels on mRNA abundance. Cell 165 (2016), 535–550, 10.1016/j.cell.2016.03.014.
Love, M.I., Huber, W., Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 2014, 550, 10.1186/s13059-014-0550-8.
Martinez, R.S., Salji, M.J., Rushworth, L., Ntala, C., Rodriguez Blanco, G., Hedley, A., Clark, W., Peixoto, P., Hervouet, E., Renaude, E., et al. Schlafen family member 5 (SLFN5) regulates LAT1-mediated mTOR activation in castration-resistant prostate cancer. BioRxiv, 2020, 10.1101/2020.09.17.301283.
Mehta, V., Namboodiri, M.A., N-acetylaspartate as an acetyl source in the nervous system. Brain Res. Mol. Brain Res. 31 (1995), 151–157, 10.1016/0169-328x(95)00044-s.
Meller, B., Bremmer, F., Sahlmann, C.O., Hijazi, S., Bouter, C., Trojan, L., Meller, J., Thelen, P., Alterations in androgen deprivation enhanced prostate-specific membrane antigen (PSMA) expression in prostate cancer cells as a target for diagnostics and therapy. EJNMMI Res., 5, 2015, 66, 10.1186/s13550-015-0145-8.
Meller, S., Meyer, H.-A., Bethan, B., Dietrich, D., Maldonado, S.G., Lein, M., Montani, M., Reszka, R., Schatz, P., Peter, E., et al. Integration of tissue metabolomics, transcriptomics and immunohistochemistry reveals ERG- and gleason score-specific metabolomic alterations in prostate cancer. Oncotarget 7 (2016), 1421–1438, 10.18632/oncotarget.6370.
Moffett, J., Tieman, S.B., Weinberger, D.R., Coyle, J.T., Namboodiri, A.M.A., N-acetylaspartate: A Unique Neuronal Molecule in the Central Nervous System. 2006, Springer Science & Business Media.
Nguyen, T., Kirsch, B.J., Asaka, R., Nabi, K., Quinones, A., Tan, J., Antonio, M.J., Camelo, F., Li, T., Nguyen, S., et al. Uncovering the role of N-Acetyl-Aspartyl-Glutamate as a glutamate reservoir in cancer. Cell Rep. 27 (2019), 491–501.e6, 10.1016/j.celrep.2019.03.036.
Oakes, S.A., Papa, F.R., The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10 (2015), 173–194, 10.1146/annurev-pathol-012513-104649.
Patel, R., Fleming, J., Mui, E., Loveridge, C., Repiscak, P., Blomme, A., Harle, V., Salji, M., Ahmad, I., Teo, K., et al. Sprouty2 loss-induced IL6 drives castration-resistant prostate cancer through scavenger receptor B1. EMBO Mol. Med., 10, 2018, e8347, 10.15252/emmm.201708347.
Ribeiro, R., Monteiro, C., Cunha, V., Oliveira, M.J., Freitas, M., Fraga, A., Príncipe, P., Lobato, C., Lobo, F., Morais, A., et al. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. J. Exp. Clin. Cancer Res., 31, 2012, 32, 10.1186/1756-9966-31-32.
Sciarra, A., Gentilucci, A., Salciccia, S., Pierella, F., Del Bianco, F., Gentile, V., Silvestri, I., Cattarino, S., Prognostic value of inflammation in prostate cancer progression and response to therapeutic: a critical review. J. Inflamm., 13, 2016, 35, 10.1186/s12950-016-0143-2.
Simpson, B.S., Camacho, N., Luxton, H.J., Pye, H., Finn, R., Heavey, S., Pitt, J., Moore, C.M., Whitaker, H.C., Genetic alterations in the 3q26.31-32 locus confer an aggressive prostate cancer phenotype. Commun. Biol., 3, 2020, 440, 10.1038/s42003-020-01175-x.
Sircar, K., Huang, H., Hu, L., Cogdell, D., Dhillon, J., Tzelepi, V., Efstathiou, E., Koumakpayi, I.H., Saad, F., Luo, D., et al. Integrative molecular profiling reveals asparagine synthetase is a target in castration-resistant prostate cancer. Am. J. Pathol. 180 (2012), 895–903, 10.1016/j.ajpath.2011.11.030.
Smittenaar, C.R., Petersen, K.A., Stewart, K., Moitt, N., Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 115 (2016), 1147–1155, 10.1038/bjc.2016.304.
Sramkoski, R.M., Pretlow, T.G., Giaconia, J.M., Pretlow, T.P., Schwartz, S., Sy, M.S., Marengo, S.R., Rhim, J.S., Zhang, D., Jacobberger, J.W., A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev. Biol. Anim. 35 (1999), 403–409, 10.1007/s11626-999-0115-4.
Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457 (2009), 910–914, 10.1038/nature07762.
Stagljar, I., The power of OMICs. Biochem. Biophys. Res. Commun. 479 (2016), 607–609, 10.1016/j.bbrc.2016.09.095.
Taylor, B.S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B.S., Arora, V.K., Kaushik, P., Cerami, E., Reva, B., et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 18 (2010), 11–22, 10.1016/j.ccr.2010.05.026.
Tyanova, S., Temu, T., Cox, J., The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11 (2016), 2301–2319, 10.1038/nprot.2016.136.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., Cox, J., The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13 (2016), 731–740, 10.1038/nmeth.3901.
Voelkel-Johnson, C., Norris, J.S., White-Gilbertson, S., Interdiction of sphingolipid metabolism revisited: focus on prostate cancer. Adv. Cancer Res. 140 (2018), 265–293, 10.1016/bs.acr.2018.04.014.
Wang, Y., Yang, F., Gritsenko, M.A., Wang, Y., Clauss, T., Liu, T., Shen, Y., Monroe, M.E., Lopez-Ferrer, D., Reno, T., et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11 (2011), 2019–2026, 10.1002/pmic.201000722.
Whitaker, H.C., Shiong, L.L., Kay, J.D., Grönberg, H., Warren, A.Y., Seipel, A., Wiklund, F., Thomas, B., Wiklund, P., Miller, J.L., et al. N-acetyl-L-aspartyl-L-glutamate peptidase-like 2 is overexpressed in cancer and promotes a pro-migratory and pro-metastatic phenotype. Oncogene 33 (2014), 5274–5287, 10.1038/onc.2013.464.
Wiame, E., Tyteca, D., Pierrot, N., Collard, F., Amyere, M., Noel, G., Desmedt, J., Nassogne, M.-C., Vikkula, M., Octave, J.-N., et al. Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochem. J. 425 (2009), 127–136, 10.1042/BJ20091024.