[en] The endogenous mechanism of RNA interference is more and more used in research to obtain specific down-regulation of gene expression in diseases such as breast cancer. Currently, despite the new fields of study open up by RNA interference, the rapid degradation of siRNA by nucleases and their negative charges prevent them from crossing cell membranes. To overcome these limitations, superparamagnetic iron oxide nanoparticles (SPIONs) represent a promising alternative for nucleic acid delivery. Previously, we reported the magnetic siRNA nanovectors (MSN) formulation using electrostatic assembly of (1) SPIONs, also able to act as contrast agents for magnetic resonance imaging (MRI), (2) siRNA and (3) chitosan aiming at their protection and enhancing their transfection efficacy. However, these nanoparticles displayed low stability in biological suspensions and inefficient transfection of active siRNA. This work aimed at upgrading MSN to Stealth MSN (S-MSN) by adding a polyethylene glycol coating to ensure colloidal stability and stealth properties. Furthermore, another polymer (poly-L-arginine) was added for efficient siRNA transfection and the quantitative composition of the formulation was adapted for biological purposes. Results showed that S-MSN provide high siRNA complexation and protection against enzymatic degradation. Green fluorescent protein (GFP) specific down-regulation on MDA-MB231/GFP cells was comparable to that of commercially available reagents, without observable cytotoxicity. According to our works, S-MSN appears as an effective formulation for in vitro siRNA specific delivery.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Bruniaux, J; Université François-Rabelais, EA6295 « Nanomédicaments et Nanosondes », Tours, 37200, France
Ben Djemaa, Sanaa ; Université de Liège - ULiège > GIGA > GIGA Molecular Biology of Diseases - Gene Expression & Cancer
Hervé-Aubert, K; Université François-Rabelais, EA6295 « Nanomédicaments et Nanosondes », Tours, 37200, France
Marchais, H; Université François-Rabelais, EA6295 « Nanomédicaments et Nanosondes », Tours, 37200, France
Chourpa, I; Université François-Rabelais, EA6295 « Nanomédicaments et Nanosondes », Tours, 37200, France
David, S; Université François-Rabelais, EA6295 « Nanomédicaments et Nanosondes », Tours, 37200, France. Electronic address: stephanie.david@univ-tours.fr
Language :
English
Title :
Stealth magnetic nanocarriers of siRNA as platform for breast cancer theranostics.
INCa - Institut National du Cancer Fondation ARC pour la Recherche sur le Cancer LNCC - Ligue Nationale Contre le Cancer Region Centre-Val de Loire
Funding text :
This work is supported by the “ Institut National du Cancer (INCa) ”, the “ Fondation ARC ” and the “ Ligue Nationale Contre le Cancer (LNCC) ” ( ARC_INCa_LNCC_7636 ). We are thankful to the " Région Centre-Val de Loire " (NCIS Project). The authors would like to thank Isabelle Dimier-Poisson and Nathalie Moire (UMR INRA 1282, team of “Infectiologie et Santé Publique”, University François Rabelais of Tours) for her help with flow cytometry experiments and Didier Bedin (EA6295, "Nanomédicaments et nanosondes", University François Rabelais of Tours) for technical support. Appendix AThis work is supported by the ?Institut National du Cancer (INCa)?, the ?Fondation ARC? and the ?Ligue Nationale Contre le Cancer (LNCC)? (ARC_INCa_LNCC_7636). We are thankful to the ?R?gion Centre-Val de Loire? (NCIS Project). The authors would like to thank Isabelle Dimier-Poisson and Nathalie Moire (UMR INRA 1282, team of ?Infectiologie et Sant? Publique?, University Fran?ois Rabelais of Tours) for her help with flow cytometry experiments and Didier Bedin (EA6295, ?Nanom?dicaments et nanosondes?, University Fran?ois Rabelais of Tours) for technical support.
Akinc, A., Thomas, M., Klibanov, A.M., Langer, R., Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J. Gene Med. 7 (2005), 657–663, 10.1002/jgm.696.
Alric, C., Aubrey, N., Allard-Vannier, E., di Tommaso, A., Blondy, T., Dimier-Poisson, I., Chourpa, I., Hervé-Aubert, K., Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Adv., 6, 2016, 37099, 10.1039/c6ra06076e.
Cheong, S.J., Lee, C.M., Kim, S.L., Jeong, H.J., Kim, E.M., Park, E.H., Kim, D.W., Lim, S.T., Sohn, M.H., Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int. J. Pharm. 372 (2009), 169–176, 10.1016/j.ijpharm.2009.01.009.
David, S., Marchais, H., Bedin, D., Chourpa, I., Modelling the response surface to predict the hydrodynamic diameters of theranostic magnetic siRNA nanovectors. Int. J. Pharm. 478 (2015), 409–415, 10.1016/j.ijpharm.2014.11.061.
David, S., Marchais, H., Hervé-Aubert, K., Bedin, D., Garin, A.-S., Hoinard, C., Chourpa, I., Use of experimental design methodology for the development of new magnetic siRNA nanovectors (MSN). Int. J. Pharm. 454 (2013), 660–667, 10.1016/j.ijpharm.2013.05.051.
De Fougerolles, A., Novobrantseva, T., siRNA and the lung: research tool or therapeutic drug? Curr. Curr. Opin. Pharmacol. 8 (2008), 280–285, 10.1016/j.coph.2008.04.005.
Ding, Y., Jiang, Z., Saha, K., Kim, C.S., Kim, S.T., Landis, R.F., Rotello, V.M., Gold nanoparticles for nucleic acid delivery. Mol. Ther. 22 (2014), 1075–1083, 10.1038/mt.2014.30.
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136 (2015), E359–E386, 10.1002/ijc.29210.
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 (1998), 806–811, 10.1038/35888.
Howard, K.A., Rahbek, U.L., Liu, X., Damgaard, C.K., Glud, S.Z., Andersen, M.Ø., Hovgaard, M.B., Schmitz, A., Nyengaard, J.R., Besenbacher, F., Kjems, J., RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14 (2006), 476–484, 10.1016/j.ymthe.2006.04.010.
Jere, D., Jiang, H.-L., Kim, Y.-K., Arote, R., Choi, Y.-J., Yun, C.-H., Cho, M.-H., Cho, C.-S., Chitosan-graft-polyethylenimine for Akt1 siRNA delivery to lung cancer cells. Int. J. Pharm. 378 (2009), 194–200, 10.1016/j.ijpharm.2009.05.046.
Juliano, R., Alam, M.R., Dixit, V., Kang, H., Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36 (2008), 4158–4171, 10.1093/nar/gkn342.
Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M.C.U., Voduc, D., Speers, C.H., Nielsen, T.O., Gelmon, K., Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28 (2010), 3271–3277, 10.1200/JCO.2009.25.9820.
Kim, E.-J., Shim, G., Kim, K., Kwon, I.C., Oh, Y.-K., Shim, C.-K., Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J. Gene. Med. 11 (2009), 791–803, 10.1002/jgm.1352.
Lavertu, M., Méthot, S., Tran-Khanh, N., Buschmann, M.D., High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27 (2006), 4815–4824, 10.1016/j.biomaterials.2006.04.029.
Layzer, J.M., McCaffrey, A.P., Tanner, A.K., Huang, Z., Kay, M.A., Sullenger, B.A., In vivo activity of nuclease-resistant siRNAs. RNA 10 (2004), 766–771, 10.1261/RNA.5239604.
Li, J.M., Zhao, M.X., Su, H., Wang, Y.Y., Tan, C.P., Ji, L.N., Mao, Z.W., Multifunctional quantum-dot-based siRNA delivery for HPV18 E6 gene silence and intracellular imaging. Biomaterials 32 (2011), 7978–7987, 10.1016/j.biomaterials.2011.07.011.
Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K. a., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W., Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J. Control. Release 70 (2001), 399–421, 10.1016/S0168-3659(00)00361-8.
Mao, S., Sun, W., Kissel, T., Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 62 (2010), 12–27, 10.1016/j.addr.2009.08.004.
Medarova, Z., Pham, W., Farrar, C., Petkova, V., Moore, A., In vivo imaging of siRNA delivery and silencing in tumors. Nat. med 13 (2007), 372–377, 10.1038/nm1486.
Meister, G., Tuschl, T., Mechanisms of gene silencing by double-stranded RNA. Nature 431 (2004), 343–349, 10.1038/nature02873.
Merkel, O.M., Librizzi, D., Pfestroff, A., Schurrat, T., Buyens, K., Sanders, N.N., De Smedt, S.C., Behe, M., Kissel, T., Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by luorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. J. Control. Release. 138 (2009), 148–159, 10.1016/j.jconrel.2009.05.01.
Nguyen, J., Szoka, F.C., Nucleic acid delivery: the missing pieces of the puzzle?. Acc. Chem. Res. 45 (2012), 1153–1162, 10.1021/ar3000162.
Noh, S.M., Park, M.O., Shim, G., Han, S.E., Lee, H.Y., Huh, J.H., Kim, M.S., Choi, J.J., Kim, K., Kwon, I.C., Kim, J.-S., Baek, K.-H., Oh, Y.-K., Pegylated poly-l-arginine derivatives of chitosan for effective delivery of siRNA. J. Control. Release 145 (2010), 159–164, 10.1016/j.jconrel.2010.04.005.
Opanasopit, P., Tragulpakseerojn, J., Apirakaramwong, A., Ngawhirunpat, T., Rojanarata, T., Chitosan enhances transfection efficiency of cationic polypeptides/DNA complexes. Int. J. Pharm. 410 (2011), 161–168, 10.1016/j.ijpharm.2011.03.008.
Ozcan, G., Ozpolat, B., Coleman, R.L., Sood, A.K., Lopez-Berestein, G., Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev. 87 (2015), 108–119, 10.1016/j.addr.2015.01.007.
Perche, F., Yi, Y., Hespel, L., Mi, P., Dirisala, a., Cabral, H., Miyata, K., Kataoka, K., Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials 90 (2016), 62–71, 10.1016/j.biomaterials.2016.02.027.
Perillo, E., Hervé-Aubert, K., Allard-Vannier, E., Falanga, A., Galdiero, S., Chourpa, I., Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionnalized with a cell penetrating peptide for cancer theranosis. J. Colloid Interface Sci. 499 (2017), 209–217, 10.1016/j.jcis.2017.03.106.
Ragelle, H., Vandermeulen, G., Préat, V., Chitosan-based siRNA delivery systems. J. Control Release 172 (2013), 207–218, 10.1016/j.jconrel.2013.08.005.
Resnier, P., Montier, T., Mathieu, V., Benoit, J.P., Passirani, C., A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34 (2013), 6429–6443, 10.1016/j.biomaterials.2013.04.060.
Santel, a, Aleku, M., Keil, O., Endruschat, J., Esche, V., Fisch, G., Dames, S., Löffler, K., Fechtner, M., Arnold, W., Giese, K., Klippel, a, Kaufmann, J., A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 13 (2006), 1222–1234, 10.1038/sj.gt.3302777.
Techaarpornkul, S., Wongkupasert, S., Opanasopit, P., Apirakaramwong, A., Nunthanid, J., Ruktanonchai, U., Chitosan-mediated siRNA delivery in vitro: effect of polymer molecular weight, concentration and salt forms. AAPS PharmSciTech 11 (2010), 64–72, 10.1208/s12249-009-9355-6.
Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., Aigner, a, RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12 (2005), 461–466, 10.1038/sj.gt.3302425.
Veiseh, O., Kievit, F.M., Mok, H., Ayesh, J., Clark, C., Fang, C., Leung, M., Arami, H., Park, J.O., Zhang, M., Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 32 (2011), 5717–5725, 10.1016/j.biomaterials.2011.04.039.
Veiseh, O., Gunn, J.W., Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62 (2010), 284–304, 10.1016/j.addr.2009.11.002.
Wood, L.D., Parsons, D.W., Jones, S., Lin, J., Sjöblom, T., Leary, R.J., Shen, D., Boca, S.M., Barber, T., Ptak, J., Silliman, N., Szabo, S., Dezso, Z., Ustyanksky, V., Nikolskaya, T., Nikolsky, Y., Karchin, R., Wilson, P.A., Kaminker, J.S., Zhang, Z., Croshaw, R., Willis, J., Dawson, D., Shipitsin, M., Willson, J.K., Sukumar, S., Polyak, K., Park, B.H., Pethiyagoda, C.L., Pant, P.V., Ballinger, D.G., Sparks, A.B., Hartigan, J., Smith, D.R., Suh, E., Papadopoulos, N., Buckhaults, P., Markowitz, S.D., Parmigiani, G., Kinzler, K.W., Velculescu, V.E., The genomic landscapes of human breast and colorectal cancers. Science. 318 (2007), 1108–1113, 10.1126/science.1145720.
Yu, Y.H., Kim, E., Park, D.E., Shim, G., Lee, S., Kim, Y.B., Kim, C.-W., Oh, Y.-K., Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm. 80 (2012), 268–273, 10.1016/j.ejpb.2011.11.002.
Zeller, S., Choi, C.S., Uchil, P.D., Ban, H.S., Siefert, A., Fahmy, T.M., Mothes, W., Lee, S.K., Kumar, P., Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed sirna. Chem. Biol. 22 (2015), 50–62, 10.1016/j.chembiol.2014.11.009.
Zhang, J., Li, X., Huang, L., Non-viral nanocarriers for siRNA delivery in breast cancer. J. Control. Release 190 (2014), 440–450, 10.1016/j.jconrel.2014.05.037.