[en] The development of an efficient small interfering RNA (siRNA) delivery system has held scientists interest since the discovery of the RNA interference mechanism (RNAi). This strategy gives hope for the treatment of many severe diseases. Herein, we developed hybrid nanovectors able to deliver siRNA to triple negative breast cancer cells. The nanovectors are based on PEGylated superparamagnetic iron oxide nanoparticles (SPION) functionalized with gH625 peptide, chitosan and poly-l-arginine. Every component has a key role and specific function: SPION is the core scaffolding the nanovector; PEG participates in the colloidal stability and the immune stealthiness; gH625 peptide promotes the nanovector internalization into cancer cells; cationic polymers provide the siRNA protection and favor siRNA endosomal escape and delivery to cytosol. The formulation was optimized by varying the amount of each compound. The efficacy of the siRNA retention and protection were investigated in the presence of high concentration of serum. Optimized nanovectors show a high uptake by MDA-MB-231 cells. The resulting down regulation of GFP expression was 73 ± 3% with our nanovector compared to 59 ± 8% obtained with the siRNA-Oligofectamine™ complex in the same conditions.
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Ben Djemaa, Sanaa ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques ; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France
David, Stephanie ; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France. Electronic address: stephanie.david@univ-tours.fr
Hervé-Aubert, Katel; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France
Falanga, Annarita ; Department of Pharmacy, CIRPEB - University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy
Galdiero, Stefania; Department of Pharmacy, CIRPEB - University of Naples "Federico II", Via Mezzocannone 16, 80134 Napoli, Italy
Allard-Vannier, Emilie ; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France
Chourpa, Igor; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France
Munnier, Emilie; EA6295 Nanomédicaments et Nanosondes, Université de Tours, 31 Avenue Monge, 37200 Tours, France
Language :
English
Title :
Formulation and in vitro evaluation of a siRNA delivery nanosystem decorated with gH625 peptide for triple negative breast cancer theranosis.
Publication date :
October 2018
Journal title :
European Journal of Pharmaceutics and Biopharmaceutics
Region Centre-Val de Loire Cancéropôle du Grand Ouest
Funding text :
This work was funded by the “Région Centre-Val de Loire” (MATURE Project) and supported by the “Cancéropôle Grand Ouest”. We thank Isabelle Dimier-Poisson, Nathalie Moire and Zineb Lakhrif (UMR INRA 1282, team of “Infectiologie et Santé Publique” University of Tours) for their help with flow cytometry experiments.This work was funded by the “ Région Centre-Val de Loire ” (MATURE Project) and supported by the “ Cancéropôle Grand Ouest ”. We thank Isabelle Dimier-Poisson, Nathalie Moire and Zineb Lakhrif (UMR INRA 1282, team of “Infectiologie et Santé Publique”, University of Tours) for their help with flow cytometry experiments.
Venkitaraman, R., Triple-negative/basal-like breast cancer: clinical, pathologic and molecular features. Expert Rev. Anticancer Ther. 10 (2010), 199–207, 10.1586/era.09.189.
Rakha, E.A., El-Sayed, M.E., Green, A.R., Lee, A.H.S., Robertson, J.F., Ellis, I.O., Prognostic markers in triple-negative breast cancer. Cancer 109 (2007), 25–32, 10.1002/cncr.22381.
Kalimutho, M., Parsons, K., Mittal, D., López, J.A., Srihari, S., Khanna, K.K., Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol. Sci. 36 (2015), 822–846, 10.1016/j.tips.2015.08.009.
Guruprasath, P., Kim, J., Gunassekaran, G.R., Chi, L., Kim, S., Park, R.-W., Kim, S.-H., Baek, M.-C., Bae, S.M., Kim, S.-Y., Kim, D.-K., Park, I.-K., Kim, W.-J., Lee, B., Interleukin-4 receptor-targeted delivery of Bcl-xL siRNA sensitizes tumors to chemotherapy and inhibits tumor growth. Biomaterials 142 (2017), 101–111, 10.1016/j.biomaterials.2017.07.024.
Jaganathan, H., Mitra, S., Srinivasan, S., Dave, B., Godin, B., Design and in vitro evaluation of layer by layer siRNA nanovectors targeting breast tumor initiating cells. PLOS One, 9, 2014, e91986, 10.1371/journal.pone.0091986.
Werfel, T.A., Jackson, M.A., Kavanaugh, T.E., Kirkbride, K.C., Miteva, M., Giorgio, T.D., Duvall, C., Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo. J. Control. Release 255 (2017), 12–26, 10.1016/j.jconrel.2017.03.389.
de Fougerolles, A., Vornlocher, H.-P., Maraganore, J., Lieberman, J., Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6 (2007), 443–453, 10.1038/nrd2310.
Meister, G., Tuschl, T., Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 10.1038/nature02873.
Haussecker, D., Current issues of RNAi therapeutics delivery and development. J. Control. Release 195 (2014), 49–54, 10.1016/j.jconrel.2014.07.056.
Videira, M., Arranja, A., Rafael, D., Gaspar, R., Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomed. Nanotechnol. Biol. Med. 10 (2014), 689–702, 10.1016/j.nano.2013.11.018.
Ferrari, M., Sun, T., Shen, H., Nanovector delivery of siRNA for cancer therapy. Cancer Gene Ther., 19, 2012, 10.1038/cgt.2012.22.
Resnier, P., Montier, T., Mathieu, V., Benoit, J.-P., Passirani, C., A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34 (2013), 6429–6443, 10.1016/j.biomaterials.2013.04.060.
Carvalho, A., Martins, M.B.F., Corvo, M.L., Feio, G., Enhanced contrast efficiency in MRI by PEGylated magnetoliposomes loaded with PEGylated SPION: effect of SPION coating and micro-environment. Mater. Sci. Eng., C 43 (2014), 521–526, 10.1016/j.msec.2014.07.055.
Mok, H., Veiseh, O., Fang, C., Kievit, F.M., Wang, F.Y., Park, J.O., Zhang, M., pH-sensitive siRNA nanovector for targeted gene silencing and cytotoxic effect in cancer cells. Mol. Pharm. 7 (2010), 1930–1939, 10.1021/mp100221h.
Veiseh, O., Kievit, F.M., Fang, C., Mu, N., Jana, S., Leung, M.C., Mok, H., Ellenbogen, R.G., Park, J.O., Zhang, M., Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31 (2010), 8032–8042, 10.1016/j.biomaterials.2010.07.016.
Veiseh, O., Kievit, F.M., Mok, H., Ayesh, J., Clark, C., Fang, C., Leung, M., Arami, H., Park, J.O., Zhang, M., Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 32 (2011), 5717–5725, 10.1016/j.biomaterials.2011.04.039.
Perillo, E., Hervé-Aubert, K., Allard-Vannier, E., Falanga, A., Galdiero, S., Chourpa, I., Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis. J. Colloid Interf. Sci. 499 (2017), 209–217, 10.1016/j.jcis.2017.03.106.
Hoffman, A.S., Pun, S.H., B.2 – Pegylation of drugs and nanocarriers. Biomater. Sci., third ed., 2013, Academic Press, 1028, 10.1016/B978-0-08-087780-8.00090-5.
Vllasaliu, D., Fowler, R., Stolnik, S., PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin. Drug Deliv. 11 (2014), 139–154, 10.1517/17425247.2014.866651.
Galdiero, S., Falanga, A., Morelli, G., Galdiero, M., gH625: a milestone in understanding the many roles of membranotropic peptides. Biochim. Biophys. Acta BBA – Biomembr. 2015 (1848), 16–25, 10.1016/j.bbamem.2014.10.006.
Huh, M.S., Lee, S.-Y., Park, S., Lee, S., Chung, H., Lee, S., Choi, Y., Oh, Y.-K., Park, J.H., Jeong, S.Y., Choi, K., Kim, K., Kwon, I.C., Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release 144 (2010), 134–143, 10.1016/j.jconrel.2010.02.023.
Sun, P., Huang, W., Jin, M., Wang, Q., Fan, B., Kang, L., Gao, Z., Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int. J. Nanomed. 11 (2016), 4931–4945, 10.2147/IJN.S105427.
Dominska, M., Dykxhoorn, D.M., Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123 (2010), 1183–1189, 10.1242/jcs.066399.
Wang, J.J., Zeng, Z.W., Xiao, R.Z., Xie, T., Zhou, G.L., Zhan, X.R., Wang, S.L., Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 6 (2011), 765–774, 10.2147/IJN.S17296.
David, S., Marchais, H., Bedin, D., Chourpa, I., Modelling the response surface to predict the hydrodynamic diameters of theranostic magnetic siRNA nanovectors. Int. J. Pharm. 478 (2015), 409–415, 10.1016/j.ijpharm.2014.11.061.
Fernandes, J.C., Qiu, X., Winnik, F.M., Benderdour, M., Zhang, X., Dai, K., Shi, Q., Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies. Int. J. Nanomed. 7 (2012), 5833–5845, 10.2147/IJN.S35567.
Hoshyar, N., Gray, S., Han, H., Bao, G., The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11 (2016), 673–692, 10.2217/nnm.16.5.
Liu, X., Huang, N., Li, H., Jin, Q., Ji, J., Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir 29 (2013), 9138–9148, 10.1021/la401556k.
Martens, T.F., Remaut, K., Demeester, J., De Smedt, S.C., Braeckmans, K., Intracellular delivery of nanomaterials: how to catch endosomal escape in the act. Nano Today 9 (2014), 344–364, 10.1016/j.nantod.2014.04.011.
Al-Qadi, S., Grenha, A., Remuñán-López, C., Chitosan and its derivatives as nanocarriers for siRNA delivery. J. Drug Deliv. Sci. Technol. 22 (2012), 29–42.
Liu, X., Howard, K.A., Dong, M., Andersen, M.Ø., Rahbek, U.L., Johnsen, M.G., Hansen, O.C., Besenbacher, F., Kjems, J., The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28 (2007), 1280–1288, 10.1016/j.biomaterials.2006.11.004.
Lv, H., Zhang, S., Wang, B., Cui, S., Yan, J., Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release Off. J. Control. Release Soc. 114 (2006), 100–109, 10.1016/j.jconrel.2006.04.014.
Shim, M.S., Kwon, Y.J., Efficient and targeted delivery of siRNA in vivo. FEBS J. 277 (2010), 4814–4827, 10.1111/j.1742-4658.2010.07904.x.
Corish, P., Tyler-Smith, C., Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12 (1999), 1035–1040.
Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.-C., Kain, S.R., Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273 (1998), 34970–34975, 10.1074/jbc.273.52.34970.
Ding, Y., Wang, Y., Zhou, J., Gu, X., Wang, W., Liu, C., Bao, X., Wang, C., Li, Y., Zhang, Q., Direct cytosolic siRNA delivery by reconstituted high density lipoprotein for target-specific therapy of tumor angiogenesis. Biomaterials 35 (2014), 7214–7227, 10.1016/j.biomaterials.2014.05.009.