General Engineering; Numerical Analysis; Material science; Foam; Tomography; Boundary representation; Finite element methods
Abstract :
[en] The present article introduces an automated procedure to construct geometrical
Representative Volume Elements (RVE) of open-foam cellular materials from com-
puterized tomography (CT) images, with the final aim of generating meshable
geometries usable in the Finite Element Method (FEM) used in order to analyse their
mechanical behaviour. The methodology consists in growing and fitting a set of ellip-
soids to each of the foam cells. These ellipsoids are seeded by local maxima of the
distance to the struts obtained from computer tomography images. This methodol-
ogy is thus fully voxel-based and does not depend on any assumption about statistical
distributions of the foam cells. Therefore, it is able to reproduce an accurate geomet-
rical model of the foam’s microstructure and its possible irregularities. Moreover,
this procedure allows the processing of large 3D data sets that do not fit the random
access memory (RAM) by slicing it into smaller independent chunks. The effective-
ness of the proposed approach is illustrated by comparing it to FEM simulations for
which meshes are obtained from a feature reconstruction approach. Both FEM sim-
ulations are then compared with experimental results of uniaxial compressions of an
open foam.
Disciplines :
Mechanical engineering
Author, co-author :
Leblanc, Christophe ; Université de Liège - ULiège > Aérospatiale et Mécanique (A&M)
The research has been funded by the Actions de recherche concertées ARC 09/14-02 BRIDGING – From imaging to geometrical modeling of complex micro-structured materials: Bridging computational engineering and material science from the Direction générale de l’Enseignement non obligatoire de la Recherche scientifique, Direction de la Recherche scientifique, Communauté française de Belgique, and granted by the Académie Universitaire Wallonie-Europe and by the “F.R.SF. N.R.S. EnlightenIt project”, grant number PDR T.0038.16.
Computational resources have been provided by the supercomputing facilities of the Consortium des Équipements de Calcul Intensif en Fédération Wallonie Bruxelles (CECI) funded by the Fond de la Recherche Scientifique de Belgique (FRS-FNRS).
Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; 1997.
Lautensack C. Fitting three-dimensional Laguerre tessellations to foam structures. J Appl Stat. 2008;35(9):985-995. doi:10.1080/02664760802188112
Jung A, Beex LAA, Diebels S, Bordas SPA. Open-cell aluminium foams with graded coatings as passively controllable energy absorbers. Mater Des. 2015;87:36-41. doi:10.1016/j.matdes.2015.07.165
Yin S, Rayess N. Characterization of polymer-metal foam hybrids for use in vibration dampening and isolation. Proc Mater Sci. 2014;4:311-316. doi:10.1016/j.mspro.2014.07.564
Villafán-Vidales HI, Abanades S, Caliot C, Romero-Paredes H. Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver. Appl Therm Eng. 2011;31(16):3377-3386. doi:10.1016/j.applthermaleng.2011.06.022
Destefanis R, Schäfer F, Lambert M, Faraud M. Selecting enhanced space debris shields for manned spacecraft. Int J Impact Eng. 2006;33(1-12):219-230. doi:10.1016/j.ijimpeng.2006.09.065
Banhart J. Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci. 2001;46(6):559-632. doi:10.1016/S0079-6425(00)00002-5
Singh S, Bhatnagar N. A survey of fabrication and application of metallic foams (1925-2017). J Porous Mater. 2018;25(2):537-554. doi:10.1007/s10934-017-0467-1
Plateau JAF. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars; 1873.
Kraynik AM, Reinelt DA, van Swol F. Structure of random monodisperse foam. Phys Rev E. 2003;67:031403. doi:10.1103/PhysRevE.67.031403
Spettl A, Brereton T, Duan Q, et al. Fitting Laguerre tessellation approximations to tomographic image data. Philos Mag. 2016;96(2):166-189. doi:10.1080/14786435.2015.1125540
Godehardt M, Schladitz K. Geometric characterisation of light weight composites using computer tomographic images. ECNDT 2006 - We.1.6.3; 2006.
Youssef S, Maire E, Gaertner R. Finite element modelling of the actual structure of cellular materials determined by X-ray tomography. Acta Mater. 2005;53(3):719-730. doi:10.1016/j.actamat.2004.10.024
Zhu X, Ai S, Fang D, Liu B, Lu X. A novel modeling approach of aluminum foam based on MATLAB image processing. Comput Mater Sci. 2014;82:451-456. doi:10.1016/j.commatsci.2013.10.020
Natesaiyer K, Chan C, Sinha-Ray S, et al. X-ray CT imaging and finite element computations of the elastic properties of a rigid organic foam compared to experimental measurements: insights into foam variability. J Mater Sci. 2015;50(11):4012-4024. doi:10.1007/s10853-015-8958-4
Redenbach C. Modelling foam structures using random tessellations. Proceedings of the European Congress of Stereology and Image Analysis; 2009; Milan Esculapio Publication Company.
Kampf J, Schlachter AL, Redenbach C, Liebscher A. Segmentation, statistical analysis, and modelling of the wall system in ceramic foams. Mater Charact. 2015;99:38-46. doi:10.1016/j.matchar.2014.11.008
Vincent L. Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans Image Process. 1993;2(2):176-201. doi:10.1109/83.217222
Soille P. Morphological Image Analysis. Springer; 1999.
Sun H, Yang J, Ren M. A fast watershed algorithm based on chain code and its application in image segmentation. Pattern Recogn Lett. 2005;26(9):1266-1274. doi:10.1016/j.patrec.2004.11.007
Bieniek A, Burkhardt H, Freiburg A, Marschner H, Schreiber G, Nolle M. A parallel watershed algorithm. Proceedings of the 10th Scandinavian Conference on Image Analysis (SCIA'97); 1997:237-244.
Körbes A, Vitor GB, Ferreira JV, de Alencar LR, Einstein AA, Mendeleyev R. A proposal for a parallel watershed transform algorithm for real-time segmentation. Proceedings of Workshop de Visao Computacional WVC; 2009.
Al-Raoush R, Alshibli KA. Distribution of local void ratio in porous media systems from 3D X-ray microtomography images. Phys A Stat Mech Appl. 2006;361(2):441-456. doi:10.1016/j.physa.2005.05.043
Veyhl C, Belova IV, Murch GE, Fiedler T. Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography. Mater Sci Eng A. 2011;528(13-14):4550-4555. doi:10.1016/j.msea.2011.02.031
Fiedler T, Solórzano E, Garcia-Moreno F, Öchsner A, Belova IV, Murch GE. Computed tomography based finite element analysis of the thermal properties of cellular aluminium. Mater Werkst. 2009;40(3):139-143. doi:10.1002/mawe.200900419
Montminy MD, Tannenbaum AR, Macosko CW. The 3D structure of real polymer foams. J Colloid Interface Sci. 2004;280(1):202-211. doi:10.1016/j.jcis.2004.07.032
Legrain G, Cartraud P, Perreard I, Moës N. An X-FEM and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng. 2011;86(7):915-934. doi:10.1002/nme.3085
Thomson W. LXIII. On the division of space with minimum partitional area. Lond Edinburgh Dublin Philos Mag J Sci. 1887;24(151):503-514.
Weaire D, Phelan R. A counter-example to Kelvin's conjecture on minimal surfaces. Philos Mag Lett. 1994;69(2):107-110. doi:10.1080/09500839408241577
Hardenacke V, Hohe J. Assessment of space division strategies for generation of adequate computational models for solid foams. Int J Mech Sci. 2010;52(12):1772-1782. doi:10.1016/j.ijmecsci.2010.09.011
Bracconi M, Ambrosetti M, Maestri M, Groppi G, Tronconi E. A systematic procedure for the virtual reconstruction of open-cell foams. Chem Eng J. 2017;315:608-620. doi:10.1016/j.cej.2017.01.069
Zhu W, Blal N, Cunsolo S, Baillis D. Effective elastic properties of periodic irregular open-cell foams. Int J Solids Struct. 2018;143:155-166. doi:10.1016/j.ijsolstr.2018.03.003
Wan F, Tran M-P, Leblanc C, et al. Experimental and computational micro-mechanical investigations of compressive properties of polypropylene/multi-walled carbon nanotubes nanocomposite foams. Mech Mater. 2015;91:95-118. doi:10.1016/j.mechmat.2015.07.004
Van Der Burg MWD, Shulmeister V, Van Der Geissen E, Marissen R. On the linear elastic properties of regular and random open-cell foam models. J Cell Plast. 1997;33(1):31-54. doi:10.1177/0021955X9703300103
Lautensack C, Sych T. 3D image analysis of open foams using random tessellations. Image Anal Stereol. 2006;25(2):87-93. doi:10.5566/ias.v25.p87-93
Liebscher A, Proppe C, Redenbach C, Schwarzer D. Stochastic multiscale modeling of metal foams. Proc IUTAM. 2013;6:87-96. doi:10.1016/j.piutam.2013.01.010
Redenbach C. Microstructure models for cellular materials. Comput Mater Sci. 2009;44(4):1397-1407. doi:10.1016/j.commatsci.2008.09.018
Redenbach C, Shklyar I, Andrä H. Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes. Int J Eng Sci. 2012;50(1):70-78. doi:10.1016/j.ijengsci.2011.09.002
Vecchio I, Redenbach C, Schladitz K. Angles in Laguerre tessellation models for solid foams. Comput Mater Sci. 2014;83:171-184. doi:10.1016/j.commatsci.2013.11.017
Liebscher A. Laguerre approximation of random foams. Philos Mag. 2015;95(25):2777-2792. doi:10.1080/14786435.2015.1078511
Marvi-Mashhadi M, Lopes CS, LLorca J. Modelling of the mechanical behavior of polyurethane foams by means of micromechanical characterization and computational homogenization. Int J Solids Struct. 2018;146:154-166. doi:10.1016/j.ijsolstr.2018.03.026
Marvi-Mashhadi M, Lopes CS, LLorca J. High fidelity simulation of the mechanical behavior of closed-cell polyurethane foams. J Mech Phys Solids. 2020;135:103814. doi:10.1016/j.jmps.2019.103814
Lautensack C, Zuyev S. Random Laguerre tessellations. Adv Appl Probab. 2008;40(3):630-650. doi:10.1239/aap/1222868179
Boissonnat JD, Teillaud M. Effective Computational Geometry for Curves and Surfaces. Springer; 2006.
Schaller FM, Kapfer SC, Evans ME, et al. Set Voronoi diagrams of 3D assemblies of aspherical particles. Philos Mag. 2013;93(31-33):3993-4017. doi:10.1080/14786435.2013.834389
Alpers A, Brieden A, Gritzmann P, Lyckegaard A, Poulsen HF. Generalized balanced power diagrams for 3D representations of polycrystals. Philos Mag. 2015;95(9):1016-1028. doi:10.1080/14786435.2015.1015469
Šedivý O, Brereton T, Westhoff D, et al. 3D reconstruction of grains in polycrystalline materials using a tessellation model with curved grain boundaries. Philos Mag. 2016;96(18):1926-1949. doi:10.1080/14786435.2016.1183829
Šedivý O, Dake JM, Krill CE, Schmidt V, Jäger A. Description of the 3D morphology of grain boundaries in aluminum alloys using tessellation models generated by ellipsoids. Image Anal Stereol. 2017;36(1):5-13. doi:10.5566/ias.1656
Bourne DP, Kok PJJ, Roper SM, Spanjer WDT. Laguerre tessellations and polycrystalline microstructures: a fast algorithm for generating grains of given volumes. Philos Mag. 2020;100(21):2677-2707. doi:10.1080/14786435.2020.1790053
Bezrukov A, Bargieł M, Stoyan D. Statistical analysis of simulated random packings of spheres. Part Part Syst Charact. 2002;19(2):111-118. doi:10.1002/1521-4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M
Bezrukov A, Stoyan D, Bargieł M. Spatial statistics for simulated packings of spheres. Image Anal Stereol. 2001;20(3):203. doi:10.5566/ias.v20.p203-206
Kraynik AM, Reinelt D, van Swol F. Structure of random foam. Phys Rev Lett. 2004;93:208301. doi:10.1103/PhysRevLett.93.208301
Kraynik AM. The structure of random foam. Adv Eng Mater. 2006;8(9):900-906. doi:10.1002/adem.200600167
Vecchio I, Redenbach C, Schladitz K, Kraynik AM. Improved models of solid foams based on soap froth. Comput Mater Sci. 2016;120:60-69. doi:10.1016/j.commatsci.2016.03.029
Moorthy S, Ghosh S. A model for analysis of arbitrary composite and porous microstructures with voronoi cell finite elements. Int J Numer Methods Eng. 1996;39(14):2363-2398. doi:10.1002/(SICI)1097-0207(19960730)39:14<2363::AID-NME958>3.0.CO;2-D
Wu Y, Zhou W, Wang B, Yang F. Modeling and characterization of two-phase composites by Voronoi diagram in the Laguerre geometry based on random close packing of spheres. Comput Mater Sci. 2010;47(4):951-961. doi:10.1016/j.commatsci.2009.11.028
Roberts AP, Garboczi EJ. Elastic properties of model random three-dimensional open-cell solids. J Mech Phys Solids. 2002;50(1):33-55. doi:10.1016/S0022-5096(01)00056-4
Jang W-Y, Kraynik AM, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties. Int J Solids Struct. 2008;45(7):1845-1875. doi:10.1016/j.ijsolstr.2007.10.008
Sonon B, François B, Massart TJ. An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech. 2015;56(2):221-242. doi:10.1007/s00466-015-1168-8
Kilingar NG, Ehab Moustafa Kamel K, Sonon B, Massart TJ, Noels L. Computational generation of open-foam representative volume elements with morphological control using distance fields. Eur J Mech A/Solids. 2019;78:103847. doi:10.1016/j.euromechsol.2019.103847
Barnes AT, Ravi-Chandar K, Kyriakides S, Gaitanaros S. Dynamic crushing of aluminum foams. Part I - Experiments. Int J Solids Struct. 2014;51(9):1631-1645. doi:10.1016/j.ijsolstr.2013.11.019
Gaitanaros S, Kyriakides S. Dynamic crushing of aluminum foams. Part II - Analysis. Int J Solids Struct. 2014;51(9):1646-1661. doi:10.1016/j.ijsolstr.2013.11.020
Gong L, Kyriakides S. Compressive response of open cell foams. Part II: initiation and evolution of crushing. Int J Solids Struct. 2005;42(5-6):1381-1399. doi:10.1016/j.ijsolstr.2004.07.024
Jung A, Diebels S. Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams. Mater Des. 2017;131:252-264. doi:10.1016/j.matdes.2017.06.017
Heinze S, Bleistein T, Düster A, Diebels S, Jung A. Experimental and numerical investigation of single pores for identification of effective metal foams properties: experimental and numerical investigation of single pores for identification of effective metal foams properties. ZAMM - J Appl Math Mech / Zeitschrift für Angewandte Mathematik und Mechanik. 2018;98(5):682-695. doi:10.1002/zamm.201700045
Kazhdan M, Bolitho M, Hoppe H. Poisson surface reconstruction. Proceedings of the Eurographics Symposium on Geometry Processing; 2006:61-70.
Geuzaine C, Remacle J-F. Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309-1331. doi:10.1002/nme.2579
Schroeder W. The ITK Software Guide Second Edition Updated for ITK Version 2. 4. 2nd ed. Kitware, Inc.; 2005.
Zuluaga MA, Ibañez L, Peyrin F. Large image streaming using ITKv4. Insight J. 2011 January-June;1-9. doi:10.54294/2djpwb
Ohser J, Schladitz K. Image Processing and Analysis. Clarendon Press; 2006.
Cheng J, Rajapakse JC. Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans Biomed Eng. 2009;56(3):741-748. doi:10.1109/TBME.2008.2008635
Ridler TW, Calvard S. Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cybern. 1978;8(8):630-632. doi:10.1109/TSMC.1978.4310039
Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging. 2004;13(1):146-165. doi:10.1117/1.1631316
Maurer CR, Rensheng Q, Raghavan V. A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans Pattern Anal Mach Intell. 2003;25(2):265-270. doi:10.1109/TPAMI.2003.1177156
Pham TQ. Non-maximum suppression using fewer than two comparisons per pixel. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol 6474. LNCS(PART 1); 2010:438-451. doi:10.1007/978-3-642-17688-3_41
Macia I. Generalized computation of Gaussian derivatives using ITK. Insight J. 2007 July-December:1-14. doi:10.54294/mrg5is
Deits R, Tedrake R. Computing large convex regions of obstacle-free space through semidefinite programming. In: Akin HL, Amato NM, Isler V, Stappen AF, eds. Springer Tracts in Advanced Robotics. Springer Tracts in Advanced Robotics. Vol 107. Springer International Publishing; 2015:109-124.
Tita V, Caliri MF, Angélico RA, Canto RB. Experimental analyses of the poly(vinyl chloride) foams' mechanical anisotropic behavior. Polym Eng Sci. 2012;52(12):2654-2663. doi:10.1002/pen.23222
Caliri JMF, Soares GP, Angélico RA, Canto RB, Tita V. Study of an anisotropic polymeric cellular material under compression loading. Mater Res. 2012;15(3):359-364. doi:10.1590/S1516-14392012005000034
Andersons J, Kirpluks M, Stiebra L, Cabulis U. Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Mater Des. 2016;92:836-845. doi:10.1016/j.matdes.2015.12.122
Mader K, Mokso R, Raufaste C, et al. Quantitative 3D characterization of cellular materials: segmentation and morphology of foam. Colloids Surf A Physicochem Eng Asp. 2012;415:230-238. doi:10.1016/j.colsurfa.2012.09.007
Teferra K, Graham-Brady L. Tessellation growth models for polycrystalline microstructures. Comput Mater Sci. 2015;102:57-67. doi:10.1016/j.commatsci.2015.02.006
Sander J, Ester M, Kriegel HP, Xu X. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Min Knowl Disc. 1998;2(2):169-194. doi:10.1023/A:1009745219419
Yildirim EA. On the minimum volume covering ellipsoid of ellipsoids. SIAM J Optim. 2006;17(3):621-641. doi:10.1137/050622560
Nethercote N, Seward J. Valgrind. ACM SIGPLAN Not. 2007;42(6):89. doi:10.1145/1273442.1250746
Wintiba B, Sonon B, Ehab MKK, Massart TJ. An automated procedure for the generation and conformal discretization of 3D woven composites RVEs. Compos Struct. 2017;180:955-971. doi:10.1016/j.compstruct.2017.08.010
Ehab MKK, Sonon B, Massart TJ. An integrated approach for the conformal discretization of complex inclusion-based microstructures. Comput Mech. 2019;64(4):1049-1071. doi:10.1007/s00466-019-01693-4
Si H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans Math Softw. 2015;41(2):1-36. doi:10.1145/2629697
Cignoni P, Rocchini C, Scopigno R. Metro: measuring error on simplified surfaces. Comput Graph Forum. 1998;17(2):167-174. doi:10.1111/1467-8659.00236
Nguyen V-D, Noels L. Computational homogenization of cellular materials. Int J Solids Struct. 2014;51(11-12):2183-2203. doi:10.1016/j.ijsolstr.2014.02.029
Nguyen V-D, Wu L, Noels L. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method. Comput Mech. 2017;59(3):483-505. doi:10.1007/s00466-016-1358-z
Nguyen V-D, Béchet E, Geuzaine C, Noels L. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput Mater Sci. 2012;55:390-406. doi:10.1016/j.commatsci.2011.10.017
Nguyen V-D, Wu L, Noels L. A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin. Mech Mater. 2019;133:193-213. doi:10.1016/j.mechmat.2019.02.017
Salman N, Yvinec M, Merigot Q. Feature preserving mesh generation from 3D point clouds. Proceedings of the Eurographics Symposium on Geometry Processing; Vol. 29, 2010:1623-1632.