Ballouch, Z., Hajji, R., Ettarid, M. (2020). The contribution of Deep Learning to the semantic segmentation of 3D point-clouds in urban areas. 2020 IEEE International conference of Moroccan Geomatics (Morgeo), 1-6.
Bellakaout, A. (2016). Extraction automatique des bâtiments, végétation et voirie à partir des données LiDAR 3D. PhD Thesis, Institut Agronomique et Vétérinaire Hassan II, Morocco.
Billen, R. (2013). L'avenir des modèles 3D urbains. GeoPlatform, 22-25.
Boulaassal, H. (2010). Segmentation et modélisation géométrique de façades de bâtiments à partir de relevés laser terrestres. PhD Thesis, Université de Strasbourg.
Boulch, A., Guerry, J., Saux, B.L., Audebert, N. (2018). Snapnet: 3D point cloud semantic labeling with 2D deep segmentation networks. Computers Graphics, 71, 189-198.
Castillo-Navarro, J., Le Saux, B., Boulch, A., Lefèvre, S. (2019). Réseaux de neurones semi-supervisés pour la segmentation sémantique en télédétection. Colloque GRETSI sur le Traitement du Signal et des Images, Lille, France [Online]. Available at: https://hal.archives-ouvertes.fr/hal-02343961/document.
Cui, Y., Chen, R., Chu, W., Chen, L., Tian, D., Li, Y., Cao, D. (2020). Deep learning for image and point cloud fusion in autonomous driving: A review. IEEE Transactions on Intelligent Transportation Systems. arXiv:2004.05224.
Eastman, C., Teicholz, P., Sacks, R., Liston, K. (2011). BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 2nd edition. John Wiley & Sons Inc, Hoboken, NJ.
El-Mekawy, M. (2010). Integrating BIM and GIS for 3D city modeling: The case of IFC and CityGML. TRITA SoM 2010-11.
Gilani, S.A.N., Awrangjeb, M., Lu, G. (2015). Fusion of LiDAR data and multispectral imagery for effective building detection based on graph and connected component analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W2.
Griffiths, D. and Boehm, J. (2019). Improving public data for building segmentation from Convolutional Neural Networks (CNNs) for fused airborne LiDAR and image data using active contours. ISPRS Journal of Photogrammetry and Remote Sensing, 154(2019), 70-83.
Hagedorn, B., Trapp, M., Glander, T., Döllner, J. (2009). Towards an indoor level-of-detail model for route visualization. 10th International Conference Mobile Data Management: Systems, Services and Middleware. IEEE, Taipei, 692-697.
Hijazi, I., Ehlers, M., Zlatanova, S., Becker, T., van Berlo, L. (2011). Initial investigations for modeling interior utilities within 3D geo context: Transforming IFC-interior utility to CityGML/Utility Network ADE. In Advances in 3D Geo-information Sciences. Kolbe, T.H., König, G., Nagel, C. (eds). Springer, Berlin, Heidelberg.
Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A. (2020). RandLA-Net: Efficient semantic segmentation of large-scale point clouds. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 11108-11117.
Kang, T.W. and Hong, C.H. (2017). IFC-CityGML LOD mapping automation using multiprocessing-based screen-buffer scanning including mapping rule. KSCE Journal of Civil Engineering, 22(2), 373-383.
Landrieu, L. and Simonovsky, M. (2018). Large-scale point cloud semantic segmentation with Superpoint graphs. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4558-4567.
Luo, H., Khoshelham, K., Fang, L., Chen, C. (2020). Unsupervised scene adaptation for semantic segmentation of urban mobile laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 253-267.
Mazars, T. (2017). Exploitation du BIM pour la modélisation Chronographique de la planification et la simulation 4D. Thesis, Ecole de technologie supérieure, Université du Québec.
Qi, C.R., Su, H., Mo, K., Guibas, L.J. (2016). Pointnet: Deep learning on point sets for 3d classification and segmentation. CoRR, abs/1612.00593.
Qi, C.R., Yi, L., Su, H., Guibas, L.J. (2017). PointNet++: Deep hierarchical feature learning on point sets in a metric space. arXiv:1706.02413v1 [cs.CV].
Reboul, R. (2014). Segmentation, classification et modélisation à partir de données issues de capteurs dynamiques. Master's thesis, HESAM University.
Romero-Jarén, R. and Arranz, J.J. (2021). Automatic segmentation and classification of BIM elements from point clouds. Automation in Construction, 124, 103576.
Tarsha Kurdi, F. (2008). Extraction et reconstruction de bâtiments en 3D à partir de relevés LiDAR aéroportés. PhD Thesis, Université Louis Pasteur Strasbourg I.
Tchapmi, L.P., Choy, C.B., Armeni, I., Gwak, J., Savarese, S. (2017). Segcloud: Semantic segmentation of 3D point clouds. 2017 International Conference on 3D Vision (3DV), 537-547.
Thompson, E.M., Horne, M., Lockley, S., Cerny, M. (2011). Towards an information rich 3D city model: Virtual Newcastle Gateshead GIS Integration. CUPUM '11 12th International Conference on Computers in Urban Planning and Urban Management, Alberta, Canada.
Wu, W., Yang, X., Fan, Q. (2014). GIS-BIM based virtual facility energy assessment (VFEA) Framework development and use case of California State University, Fresno. Proceedings of the 2014 International Conference on Computing in Civil and Building Engineering, Orlando, FL.
Xie, Y., Tian, J., Zhu, X.X. (2019). Linking points with labels in 3D: A review of point cloud semantic segmentation. IEEE Geoscience and Remote Sensing Magazine, 8(4), 38-59.
Xiu, H., Vinayaraj, P., Kim, K.-S., Nakamura, R., Yan, W. (2018). 3D semantic segmentation for high-resolution aerial survey derived point clouds using deep learning (Demonstration). In Information Systems (SIGSPATIAL'18), Farnoush, B.-K., Erik, H. (eds). ACM, New York.
Xue, F., Lu, W., Chen, K., Webster, C.J. (2019). BIM reconstruction from 3D point clouds: A semantic registration approach based on multimodal optimization and architectural design knowledge. Advanced Engineering Informatics, 42, 100965.
Yang, L., Cheng, J.C., Wang, Q. (2020). Semi-automated generation of parametric BIM for steel structures based on terrestrial laser scanning data. Automation in Construction, 112, 103037.