[en] Uniaxial and biaxial strain approaches are usually implemented to switch the ferroelastic states, which play a key role in the application of the ferroics and shape memory materials. In this work, by using the first-principles calculations, we found not only uniaxial strain, but also shear strain can induce a novel ferroelastic switching, in which the van der Waals (vdW) layered direction rotates with the ferroelastic transition in layered bulk PdSe2. This is an interesting phenomenon that has never been discovered. The novel three-state ferroelastic switching in layered PdSe2 also occurs under shear strain. Our result shows that the shear strain could be used as an effective approach for manipulating the functionalities of layered materials in potential device applications.
Lv, Peng; School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Tang, Gang ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Liu, Yanyu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Lun, Yingzhuo; School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Wang, Xueyun ; School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Hong, Jiawang ; School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Language :
English
Title :
Van der Waals direction transformation induced by shear strain in layered PdSe2
Publication date :
April 2021
Journal title :
Extreme Mechanics Letters
ISSN :
2352-4316
Publisher :
Elsevier Ltd
Volume :
44
Pages :
101231
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This work is supported by the National Science Foundation of China (Grant No. 11572040 ), Beijing Natural Science Foundation, China (Grant No. Z190011 ), National Key Research and Development Program of China ( 2019YFA0307900 ) and Beijing Institute of Technology Research Fund Program for Young Scholars, China . Theoretical calculations were performed using resources of the National Supercomputer Centre in Guangzhou, which is supported by Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), China under Grant No. U1501501 .
Gao, P., Britson, J., Nelson, C.T., Jokisaari, J.R., Duan, C., Trassin, M., et al. Ferroelastic domain switching dynamics under electrical and mechanical excitations. Nature Commun., 5, 2014, 3801.
Alsubaie, A., Sharma, P., Lee, J.H., Kim, J.Y., Yang, C.-H., Seidel, J., Uniaxial strain-controlled ferroelastic domain evolution in BiFeO3. ACS Appl. Mater. Interf., 10, 2018, 11768.
Wang, C., Ke, X., Wang, J., Liang, R., Luo, Z., Tian, Y., et al. Ferroelastic switching in a layered-perovskite thin film. Nature Commun., 7, 2016, 10636.
He, Y., Zhong, L., Fan, F., Wang, C., Zhu, T, Mao, S.X., In situ observation of shear-driven amorphization in silicon crystals. Nature Nanotechnol., 11, 2016, 866.
Roundy, D., Krenn, C., Cohen, M.L., Morris, J. Jr., Ideal shear strengths of fcc aluminum and copper. Phys. Rev. Lett., 82, 1999, 2713.
Shi, F., Song, Z., Ross, P.N., Somorjai, G.A., Ritchie, R.O., Komvopoulos, K., Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nature Commun., 7, 2016, 11886.
Li, G., An, Q., Li, W., Goddard III, W.A., Zhai, P., Zhang, Q., et al. Brittle failure mechanism in thermoelectric skutterudite CoSb3. Chem. Sci., 27, 2015, 6329.
Yang, X., Coleman, S.P., Lasalvia, J.C., Goddard III, W.A., An, Q., Shear-induced brittle failure along grain boundaries in boron carbide. ACS Appl. Mater. Interf., 10, 2018, 5072.
Li, G., An, Q., Morozov, S.I., Duan, B., Zhai, P., Zhang, Q., et al. Determining ideal strength and failure mechanism of thermoelectric CuInTe2 through quantum mechanics. J. Mater. Chem. A, 6, 2018, 11743.
An, Q., Goddard III, W.A., Cheng, T., Atomistic explanation of shear-induced amorphous band formation in boron carbide. Phys. Rev. Lett., 113, 2014, 095501.
Chen, X., Dobson, J.F., Raston, C.L., Vortex fluidic exfoliation of graphite and boron nitride. Chem. Commun., 48, 2012, 3703.
Chen, X., Smith, N.M., Iyer, K.S., Raston, C.L., Controlling nanomaterial synthesis, chemical reactions and self assembly in dynamic thin films. Chem. Soc. Rev., 43, 2014, 1387.
Batmunkh, M., Vimalanathan, K., Wu, C., Bati, A.S., Yu, L., Tawfik, S.A., et al. Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells. Small Methods, 2019, 1800521.
Zhang, M., Wang, Z., Li, Y., Shi, L., Wu, D., Lin, T., et al. Light-induced subpicosecond lattice symmetry switch in MoTe2. Phys. Rev. X, 9, 2019, 021036.
Ghidini, M., Mansell, R., Maccherozzi, F., Moya, X., Phillips, L., Yan, W., et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nature Mater., 2019, 1.
Liu, Y., Rodrigues, J., Luo, Y.Z., Li, L., Carvalho, A., Yang, M., et al. Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure. Nature Nanotechnol., 13, 2018, 828.
Liu, X., Guo, W., Shear strain tunable exciton dynamics in two-dimensional semiconductors. Phys. Rev. B, 99, 2019, 035401.
Mielnik-Pyszczorski, A., Gawarecki, K., Gawełczyk P. Machnikowski, M., Dominant role of the shear strain induced admixture in spin-flip processes in self-assembled quantum dots. Phys. Rev. B, 97, 2018, 245313.
Sie, E.J., Nyby, C.M., Pemmaraju, C., Park, S.J., Shen, X., Yang, J., et al. An ultrafast symmetry switch in a Weyl semimetal. Nature, 565, 2019, 61.
Oyedele, A.D., Yang, S., Liang, L., Puretzky, A.A., Wang, K., Zhang, J., et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 139, 2017, 14090.
Ming, X., Autieri, C., Yamauchi, K., Picozzi, S., Role of square planar coordination in the magnetic properties of Na4IrO4. Phys. Rev. B, 96, 2017, 205158.
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., et al. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 2010, 1271.
Lei, W., Zhang, S., Heymann, G., Tang, X., Wen, J., Zheng, X., et al. A new 2D high-pressure phase of PdSe2 with high-mobility transport anisotropy for photovoltaic applications. J. Mater. Chem. C, 7, 2019, 2096.
Nguyen, G.D., Liang, L., Zou, Q., Fu, M., Oyedele, A.D., Sumpter, B.G., et al. 3D imaging and manipulation of subsurface selenium vacancies in PdSe2. Phys. Rev. Lett., 121, 2018, 086101.
Zeng, L.H., Wu, D., Lin, S.H., Xie, C., Yuan, H.Y., Lu, W., et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 29, 2019, 1806878.
Zuluaga, S., Lin, J., Suenaga, K., Pantelides, S.T., Two-dimensional PdSe2-Pd2Se3 junctions can serve as nanowires. 2D Mater., 5, 2018, 035025.
R. Kempt, A.B. Kuc, T. Heine, Two-dimensional noble-metal chalcogenides and phosphochalcogenides, Angew. Chem. Int. Edit. n/a.
Lei, W., Cai, B., Zhou, H., Heymann, G., Tang, X., Zhang, S., et al. Ferroelastic lattice rotation and band-gap engineering in quasi 2D layered-structure PdSe2 under uniaxial stress. Nanoscale, 11, 2019, 12317.
Damodaran, A.R., Pandya, S., Agar, J.C., Cao, Y., Vasudevan, R.K., Xu, R., et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films. Adv. Mater., 29, 2017, 1702069.
Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 1996, 3865.
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 1996, 11169.
Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 1996, 15.
Togo, A., Oba, F., Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 78, 2008, 134106.
Dronskowski, R., Blöchl, P.E., Crystal orbital hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem., 97, 1993, 8617.
Klimeš, J., Bowler, D.R., Michaelides, A., Chemical accuracy for the van der waals density functional. J. Phys.: Condens. Matter, 22, 2009, 022201.
Li, G., Aydemir, U., Wood, M., Goddard III, W.A., Zhai, P., Zhang, Q., et al. Ideal strength and deformation mechanism in high-efficiency thermoelectric SnSe. Chem. Sci., 29, 2017, 2382.
Li, X., Schönecker, S., Li, W., Varga, L.K., Irving, D.L., Vitos, L., Tensile and shear loading of four fcc high-entropy alloys: A first-principles study. Phys. Rev. B, 97, 2018, 094102.
Wadhawan, V., Ferroic materials: A primer. Resonance, 7, 2002, 15.
Hong, J., Vanderbilt, D., Electrically driven octahedral rotations in SrTiO3 and PbTiO3. Phys. Rev. B, 87, 2013, 064104.
Hong, J., Vanderbilt, D., Mapping the energy surface of PbTiO3 in multidimensional electric-displacement space. Phys. Rev. B, 84, 2011, 115107.
Stengel, M., Spaldin, N.A., Vanderbilt, D., Electric displacement as the fundamental variable in electronic-structure calculations. Nat. Phys., 5, 2009, 304.
Mortazavi, B., Berdiyorov, G.R., Makaremi, M., Rabczuk, T., Mechanical responses of two-dimensional MoTe2; pristine 2H, 1T and 1T′ and 1T′/2H heterostructure. Extreme Mech. Lett., 20, 2018, 65.
Gridnev, S., Khodorov, A., Relaxation of metastable states near the ferroelastic phase transition in KLiSO4. Ferroelectrics, 199, 1997, 279.
Yu, X., Shao, H., Wang, X., Zhu, Y., Fang, D., Hong, J., Anomalous lattice thermal conductivity in layered MNCl (M = Zr, Hf) materials driven by lanthanide contraction. J. Mater. Chem. A, 8, 2020, 3128.
Tang, G., Yang, C., Stroppa, A., Fang, D., Hong, J., Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb (SCN)2I2. J. Chem. Phys., 146, 2017, 224702.
Deringer, V.L., Stoffel, R.P., Wuttig, M., Dronskowski, R., Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials. Chem. Lett., 6, 2015, 5255.
Puretzky, A.A., Oyedele, A.D., Xiao, K., Haglund, A.V., Sumpter, B.G., Mandrus, D., et al. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater., 5, 2018, 035016.