Applied current; Current oscillation; Fraunhofer; Magnetic-field; Metallic interconnects; Monolithics; Multi terminals; Superconducting critical current; Weakest links; Y shape; Materials Science (all); General Materials Science
Abstract :
[en] In a multi-branch metallic interconnect we demonstrate the possibility to induce targeted modifications of the material properties by properly selecting the intensity and polarity of the applied current. We illustrate this effect in Y-shape multiterminal devices made of Nb on sapphire for which we show that the superconducting critical current can be lowered in a controlled manner at a preselected junction. We further observe the gradual appearance of Fraunhofer-like critical current oscillations with magnetic field which indicates the gradual modification of a superconducting weak link. This method permits progressive modifications of a hand-picked junction without affecting the neighboring terminals. The proposed approach has the benefit of being inexpensive and requiring conventional electronics. This technique represents a major step toward all-electric control of multiterminal Josephson junctions.
Disciplines :
Physics
Author, co-author :
Collienne, Simon ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
F.R.S.-FNRS - Fonds de la Recherche Scientifique FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen COST - European Cooperation in Science and Technology
Funding text :
This work was supported by the Fonds de la Recherche Scientifique – FNRS under the grant U.N027.18, the Research Foundation-Flanders (FWO, Belgium), Grant No. G0A0619N and by COST (European Cooperation in Science and Technology) through COST Action CA16218 “NanoCoHybri”. The work of A. V. S. is partially supported by CDR J.0151.19 and EQP U.N027.18 of the F.R.S.-FNRS. This work received support from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreements no. 824109 and 766025.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Chen H., Tan S. X. D., Sukharev V., Huang X. and Kim T., 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp. 1-6
Chen L. Tan S. X. D. Sun Z. Peng S. Tang M. Mao J. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020 28 421 432
McCaughan A. N. Abebe N. S. Zhao Q. Y. Berggren K. K. Nano Lett. 2016 16 7626 7631
Volkov A. F. Phys. Rev. Lett. 1995 74 4730 4733
de Bruyn Ouboter R. Omelyanchouk A. N. Vol E. D. Phys. B: Condens. Matter 1995 205 153 162
Volkov A. F. Takayanagi H. Phys. Rev. B: Condens. Matter Mater. Phys. 1997 56 11184 11194
Morpurgo A. F. Klapwijk T. M. van Wees B. J. Appl. Phys. Lett. 1998 72 966 968
Neurohr K. Schäpers T. Malindretos J. Lachenmann S. Braginski A. I. Lüth H. Behet M. Borghs G. Golubov A. A. Phys. Rev. B: Condens. Matter Mater. Phys. 1999 59 11197 11200
Baselmans J. A. Morpurgo A. F. van Wees B. J. Klapwijk T. M. Nature 1999 397 43 45
Shaikhaidarov R. Volkov A. F. Takayanagi H. Petrashov V. T. Delsing P. Phys. Rev. B: Condens. Matter Mater. Phys. 2000 62 R14649 R14652
Amin M. H. S. Omelyanchouk A. N. Zagoskin A. M. Phys. C 2002 372-376 178 180
Amin M. H. S. Omelyanchouk A. N. Blais A. Brink A. M. v. d. Rose G. Duty T. Zagoskin A. M. Phys. C 2002 368 310 314
Baselmans J. J. A. van Wees B. J. Klapwijk T. M. Phys. Rev. B: Condens. Matter Mater. Phys. 2002 65 224513
Winik R. Holzman I. Dalla Torre E. G. Buks E. Ivry Y. Appl. Phys. Lett. 2018 112 122601
van Heck B. Mi S. Akhmerov A. R. Phys. Rev. B: Condens. Matter Mater. Phys. 2014 90 155450
Riwar R. P. Houzet M. Meyer J. S. Nazarov Y. V. Nat. Commun. 2016 7 11167
Meyer J. S. Houzet M. Phys. Rev. B 2021 103 174504
Peralta Gavensky L. Usaj G. Balseiro C. A. Phys. Rev. B 2019 100 014514
Pfeffer A. Duvauchelle J. E. Courtois H. Mélin R. Feinberg D. Lefloch F. Phys. Rev. B: Condens. Matter Mater. Phys. 2014 90 075401
Cohen Y. Ronen Y. Kang J. H. Heiblum M. Feinberg D. Mélin R. Shtrikman H. Proc. Natl. Acad. Sci. U. S. A. 2018 115 6991 6994
Draelos A. W. Wei M. T. Seredinski A. Li H. Mehta Y. Watanabe K. Taniguchi T. Borzenets I. V. Amet F. Finkelstein G. Nano Lett. 2019 19 1039 1043
Pankratova N. Lee H. Kuzmin R. Wickramasinghe K. Mayer W. Yuan J. Vavilov M. G. Shabani J. Manucharyan V. E. Phys. Rev. X 2020 10 031051
Arnault E. G. Larson T. F. Q. Seredinski A. Zhao L. Idris S. McConnell A. Watanabe K. Taniguchi T. Borzenets I. Amet F. Finkelstein G. Nano Lett. 2021 21 9668 9674
Zharinov V. S. Baumans X. D. A. Silhanek A. V. Janssens E. Van de Vondel J. Rev. Sci. Instrum. 2018 89 043904
Keijers W. Baumans X. D. A. Panghotra R. Lombardo J. Zharinov V. S. Kramer R. B. G. Silhanek A. V. Van de Vondel J. Nanoscale 2018 10 21475 21482
Lombardo J. Jelić Z. L. Baumans X. D. A. Scheerder J. E. Nacenta J. P. Moshchalkov V. V. Van de Vondel J. Kramer R. B. G. Milošević M. V. Silhanek A. V. Nanoscale 2018 10 1987 1996
Collienne S. Raes B. Keijers W. Linek J. Koelle D. Kleiner R. Kramer R. B. G. Van de Vondel J. Silhanek A. V. Phys. Rev. Appl. 2021 15 034016
Likharev K. K. Rev. Mod. Phys. 1979 51 101 159
Golubov A. A. Kupriyanov M. Y. Il'ichev E. Rev. Mod. Phys. 2004 76 411 469
Puczkarski P. Gehring P. Lau C. S. Liu J. Ardavan A. Warner J. H. Briggs G. A. D. Mol J. A. Appl. Phys. Lett. 2015 107 133105
Tinkham M., Introduction to Superconductivity, Dover publications, Inc., 2nd edn, 1996
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.