[en] Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.
Disciplines :
Animal production & animal husbandry Veterinary medicine & animal health
Author, co-author :
Han, Hui ; Université de Liège - ULiège > TERRA Research Centre ; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Jiang, Yi; Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei, China
Wang, Mengyu; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Melaku, Mebratu; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China ; Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia, Ethiopia
Liu, Lei; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Zhao, Yong; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Everaert, Nadia ; Université de Liège - ULiège > Département GxABT
Yi, Bao; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Hongfu; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
Language :
English
Title :
Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut-liver axis.
State Key Laboratory of Animal Nutrition Agricultural Science and Technology Innovation Program Central Public-interest Scientific Institution Basal Research Fund
Funding text :
The authors acknowledge the financial support from the State Key
Laboratory of Animal Nutrition (2004DA125184G2102), the Agricultural
Science and Technology Innovation Program (CAAS-ZDRW202006-02,
ASTIP-IAS07), and Central Public-interest Scientific Institution Basal
Research Fund (Y2021GH01-4) in China.
Abernathy, B. E., T. C., Schoenfuss, A. S., Bailey, and D. D., Gallaher. 2021. Polylactose exhibits prebiotic activity and reduces adiposity and nonalcoholic fatty liver disease in rats fed a high-fat diet. The Journal of Nutrition 151 (2): 352–60. doi: 10.1093/jn/nxaa376.
Adhikari, A. A., T. C. M., Seegar, S. B., Ficarro, M. D., Mccurry, D., Ramachandran, L., Yao, S. N., Chaudhari, S., Ndousse-Fetter, A. S., Banks, J. A., Marto, et al. 2020. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nature Chemical Biology 16 (3): 318–26. doi: 10.1038/s41589-020-0467-3.
Albillos, A., A., de Gottardi, and M., Rescigno. 2020. The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of Hepatology 72 (3): 558–77. doi: 10.1016/j.jhep.2019.10.003.
Alisi, A., G., Bedogni, G., Baviera, V., Giorgio, E., Porro, C., Paris, P., Giammaria, L., Reali, F., Anania, and V., Nobili. 2014. Randomised clinical trial: The beneficial effects of vsl#3 in obese children with non-alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics 39 (11): 1276–85. doi: 10.1111/apt.12758.
Aragonès, G., M., Colom-Pellicer, C., Aguilar, E., Guiu-Jurado, S., Martínez, F., Sabench, J. A., Porras, D., Riesco, D., Del Castillo, C., Richart, et al. 2020. Circulating microbiota-derived metabolites: A "liquid biopsy?International Journal of Obesity (2005) 44 (4): 875–85. doi: 10.1038/s41366-019-0430-0.
Armstrong, M. J., P., Gaunt, G. P., Aithal, D., Barton, D., Hull, R., Parker, J. M., Hazlehurst, K., Guo, G., Abouda, M. A., Aldersley, et al. 2016. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (lean): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. The Lancet 387 (10019): 679–90. doi: 10.1016/S0140-6736(15)00803-X.
Aron-Wisnewsky, J., C., Vigliotti, J., Witjes, P., Le, A. G., Holleboom, J., Verheij, M., Nieuwdorp, and K., Clément. 2020a. Gut microbiota and human nafld: Disentangling microbial signatures from metabolic disorders. Nature Reviews. Gastroenterology & Hepatology 17 (5): 279–97. doi: 10.1038/s41575-020-0269-9.
Aron-Wisnewsky, J., M. V., Warmbrunn, M., Nieuwdorp, and K., Clément. 2020b. Nonalcoholic fatty liver disease: Modulating gut microbiota to improve severity?Gastroenterology 158 (7): 1881–98. doi: 10.1053/j.gastro.2020.01.049.
Auguet, T., L., Bertran, J., Binetti, C., Aguilar, S., Martínez, F., Sabench, J. M., Lopez-Dupla, J. A., Porras, D., Riesco, D. D., Castillo, et al. 2020. Relationship between il-8 circulating levels and tlr2 hepatic expression in women with morbid obesity and nonalcoholic steatohepatitis. International Journal of Molecular Sciences 21 (11): 4189. doi: 10.3390/ijms21114189.
Barrow, F., S., Khan, G., Fredrickson, H., Wang, K., Dietsche, P., Parthiban, S., Robert, T., Kaiser, S., Winer, A., Herman, et al. 2021. Microbiota-driven activation of intrahepatic b cells aggravates nonalcoholic steatohepatitis through innate and adaptive signaling. Hepatology (Baltimore, Md). doi: 10.1002/hep.31755.
Beaumont, M., A. M., Neyrinck, M., Olivares, J., Rodriguez, A., De Rocca Serra, M., Roumain, L. B., Bindels, P. D., Cani, P., Evenepoel, G. G., Muccioli, et al. 2018. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB Journal 32 (12): fj201800544. doi: 10.1096/fj.201800544.
Behary, J., N., Amorim, X. T., Jiang, A., Raposo, L., Gong, E., Mcgovern, R., Ibrahim, F., Chu, C., Stephens, H., Jebeili, et al. 2021. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun 12 (1): 187. doi: 10.1038/s41467-020-20422-7.
Beisner, J., L., Filipe Rosa, V., Kaden-Volynets, I., Stolzer, C., Günther, and S. C., Bischoff. 2021. Prebiotic inulin and sodium butyrate attenuate obesity-induced intestinal barrier dysfunction by induction of antimicrobial peptides. Frontiers in Immunology 12: 678360. doi: 10.3389/fimmu.2021.678360.
Bifari, F., R., Manfrini, M., Dei Cas, C., Berra, M., Siano, M., Zuin, R., Paroni, and F., Folli. 2018. Multiple target tissue effects of glp-1 analogues on non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Pharmacological Research 137: 219–29. doi: 10.1016/j.phrs.2018.09.025.
Bomhof, M. R., J. A., Parnell, H. R., Ramay, P., Crotty, K. P., Rioux, C. S., Probert, S., Jayakumar, M., Raman, and R. A., Reimer. 2019. Histological improvement of non-alcoholic steatohepatitis with a prebiotic: A pilot clinical trial. European Journal of Nutrition 58 (4): 1735–45. doi: 10.1007/s00394-018-1721-2.
Boursier, J., O., Mueller, M., Barret, M., Machado, L., Fizanne, F., Araujo-Perez, C. D., Guy, P. C., Seed, J. F., Rawls, L. A., David, et al. 2016. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology (Baltimore, Md.) 63 (3): 764–75. doi: 10.1002/hep.28356.
Brandl, K., P., Hartmann, L. J., Jih, D. P., Pizzo, J., Argemi, M., Ventura-Cots, S., Coulter, C., Liddle, L., Ling, S. J., Rossi, et al. 2018. Dysregulation of serum bile acids and fgf19 in alcoholic hepatitis. Journal of Hepatology 69 (2): 396–405. doi: 10.1016/j.jhep.2018.03.031.
Brandl, K., V., Kumar, and L., Eckmann. 2017. Gut-liver axis at the frontier of host-microbial interactions. American Journal of Physiology. Gastrointestinal and Liver Physiology 312 (5): G413–G419. doi: 10.1152/ajpgi.00361.2016.
Bril, F., D., Barb, P., Portillo-Sanchez, D., Biernacki, R., Lomonaco, A., Suman, M. H., Weber, J. T., Budd, M. E., Lupi, and K., Cusi. 2017. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 65 (4): 1132–44. doi: 10.1002/hep.28985.
Brown, A. J., S. M., Goldsworthy, A. A., Barnes, M. M., Eilert, L., Tcheang, D., Daniels, A. I., Muir, M. J., Wigglesworth, I., Kinghorn, N. J., Fraser, et al. 2003. The orphan g protein-coupled receptors gpr41 and gpr43 are activated by propionate and other short chain carboxylic acids. The Journal of Biological Chemistry 278 (13): 11312–9. doi: 10.1074/jbc.M211609200.
Cai, J., X. J., Zhang, and H., Li. 2018. Role of innate immune signaling in non-alcoholic fatty liver disease. Trends in Endocrinology and Metabolism: TEM 29 (10): 712–22. doi: 10.1016/j.tem.2018.08.003.
Canfora, E. E., R. C. R., Meex, K., Venema, and E. E., Blaak. 2019. Gut microbial metabolites in obesity, nafld and t2dm. Nature Reviews. Endocrinology 15 (5): 261–73. doi: 10.1038/s41574-019-0156-z.
Carpino, G., M., Del Ben, D., Pastori, R., Carnevale, F., Baratta, D., Overi, H., Francis, V., Cardinale, P., Onori, S., Safarikia, et al. 2020. Increased liver localization of lipopolysaccharides in human and experimental nafld. Hepatology (Baltimore, Md.) 72 (2): 470–85. doi: 10.1002/hep.31056.
Carreres, L., Z. M., Jílková, G., Vial, P. N., Marche, T., Decaens, and H., Lerat. 2021. Modeling diet-induced NAFLD and NASH in rats: A comprehensive review. Biomedicines 9 (4): 378. doi: 10.3390/biomedicines9040378.
Chang, C. S., and C. Y., Kao. 2019. Current understanding of the gut microbiota shaping mechanisms. Journal of Biomedical Science 26 (1): 59. doi: 10.1186/s12929-019-0554-5.
Chen, F., S., Esmaili, G. B., Rogers, E., Bugianesi, S., Petta, G., Marchesini, A., Bayoumi, M., Metwally, M. K., Azardaryany, S., Coulter, et al. 2020a. Lean nafld: A distinct entity shaped by differential metabolic adaptation. Hepatology 71 (4): 1213–27. doi: 10.1002/hep.30908.
Chen, M., W. L., Guo, Q. Y., Li, J. X., Xu, Y. J., Cao, B., Liu, X. D., Yu, P. F., Rao, L., Ni, and X. C., Lv. 2020b. The protective mechanism of lactobacillus plantarum fzu3013 against non-alcoholic fatty liver associated with hyperlipidemia in mice fed a high-fat diet. Food & Function 11 (4): 3316–31. doi: 10.1039/c9fo03003d.
Chen, Y. M., Y., Liu, R. F., Zhou, X. L., Chen, C., Wang, X. Y., Tan, L. J., Wang, R. D., Zheng, H. W., Zhang, W. H., Ling, et al. 2016. Associations of gut-flora-dependent metabolite trimethylamine-n-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Scientific Reports 6 (1): 19076. doi: 10.1038/srep19076.
Chenxu, G., X., Minxuan, Q., Yuting, G., Tingting, F., Jing, L., Jinxiao, W., Sujun, M., Yongjie, L., Deshuai, L., Qiang, et al. 2019. Loss of rip3 initiates annihilation of high-fat diet initialized nonalcoholic hepatosteatosis: A mechanism involving toll-like receptor 4 and oxidative stress. Free Radical Biology & Medicine 134: 23–41. doi: 10.1016/j.freeradbiomed.2018.12.034.
Choi, W., J., Namkung, I., Hwang, H., Kim, A., Lim, H. J., Park, H. W., Lee, K. H., Han, S., Park, J. S., Jeong, et al. 2018. Serotonin signals through a gut-liver axis to regulate hepatic steatosis. Nature Communications 9 (1): 4824. doi: 10.1038/s41467-018-07287-7.
Chong, P. L., D., Laight, R. J., Aspinall, A., Higginson, and M. H., Cummings. 2021. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterology 21 (1): 144. doi: 10.1186/s12876-021-01660-5.
Chu, H., Y., Duan, L., Yang, and B., Schnabl. 2019. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut 68 (2): 359–70. doi: 10.1136/gutjnl-2018-316307.
Chu, H., and S. K., Mazmanian. 2013. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nature Immunology 14 (7): 668–75. doi: 10.1038/ni.2635.
Cope, K., T., Risby, and A. M., Diehl. 2000. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 119 (5): 1340–7. doi: 10.1053/gast.2000.19267.
Corbin, K. D., and S. H., Zeisel. 2012. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Current Opinion in Gastroenterology 28 (2): 159–65. doi: 10.1097/MOG.0b013e32834e7b4b.
Corbitt, N., S., Kimura, K., Isse, S., Specht, L., Chedwick, B. R., Rosborough, J. G., Lunz, N., Murase, S., Yokota, and A. J., Demetris. 2013. Gut bacteria drive kupffer cell expansion via mamp-mediated icam-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. The American Journal of Pathology 182 (1): 180–91. doi: 10.1016/j.ajpath.2012.09.010.
Cortez-Pinto, H., P., Borralho, J., Machado, M. T., Lopes, I. V., Gato, A. M., Santos, and A. S., Guerreiro. 2016. Microbiota modulation with synbiotic decreases liver fibrosis in a high fat choline deficient diet mice model of non-alcoholic steatohepatitis (NASH). GE Portuguese Journal of Gastroenterology 23 (3): 132–41. doi: 10.1016/j.jpge.2016.01.004.
Craven, L., A., Rahman, S., Nair Parvathy, M., Beaton, J., Silverman, K., Qumosani, I., Hramiak, R., Hegele, T., Joy, J., Meddings, et al. 2020. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: A randomized control trial. The American Journal of Gastroenterology 115 (7): 1055–65. doi: 10.14309/ajg.0000000000000661.
Degirolamo, C., S., Rainaldi, F., Bovenga, S., Murzilli, and A., Moschetta. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the fxr-fgf15 axis in mice. Cell Reports 7 (1): 12–8. doi: 10.1016/j.celrep.2014.02.032.
Del Chierico, F., V., Nobili, P., Vernocchi, A., Russo, C., De Stefanis, D., Gnani, C., Furlanello, A., Zandonà, P., Paci, G., Capuani, et al. 2017. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology (Baltimore, Md.) 65 (2): 451–64. doi: 10.1002/hep.28572.
Dey, P., B. D., Olmstead, G. Y., Sasaki, Y., Vodovotz, Z., Yu, and R. S., Bruno. 2020. Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota. The Journal of Nutritional Biochemistry 84: 108455. doi: 10.1016/j.jnutbio.2020.108455.
Dumas, M. E., R. H., Barton, A., Toye, O., Cloarec, C., Blancher, A., Rothwell, J., Fearnside, R., Tatoud, V., Blanc, J. C., Lindon, et al. 2006. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America 103 (33): 12511–6. doi: 10.1073/pnas.0601056103.
Engelmann, C., M., Sheikh, S., Sharma, T., Kondo, H., Loeffler-Wirth, Y. B., Zheng, S., Novelli, A., Hall, A. J. C., Kerbert, J., Macnaughtan, et al. 2020. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. Journal of Hepatology 73 (1): 102–12. doi: 10.1016/j.jhep.2020.01.011.
Engstler, A. J., T., Aumiller, C., Degen, M., Dürr, E., Weiss, I. B., Maier, J. M., Schattenberg, C. J., Jin, C., Sellmann, and I., Bergheim. 2016. Insulin resistance alters hepatic ethanol metabolism: Studies in mice and children with non-alcoholic fatty liver disease. Gut 65 (9): 1564–71. doi: 10.1136/gutjnl-2014-308379.
Francés, R., P., Zapater, J. M., González-Navajas, C., Muñoz, R., Caño, R., Moreu, S., Pascual, P., Bellot, M., Pérez-Mateo, and J., Such. 2008. Bacterial DNA in patients with cirrhosis and noninfected ascites mimics the soluble immune response established in patients with spontaneous bacterial peritonitis. Hepatology (Baltimore, Md.) 47 (3): 978–85. doi: 10.1002/hep.22083.
Friedman, E. S., Y., Li, T. D., Shen, J., Jiang, L., Chau, L., Adorini, F., Babakhani, J., Edwards, D., Shapiro, C., Zhao, et al. 2018. Fxr-dependent modulation of the human small intestinal microbiome by the bile acid derivative obeticholic acid. Gastroenterology 155 (6): 1741–52.e5. doi: 10.1053/j.gastro.2018.08.022.
Funabashi, M., T. L., Grove, M., Wang, Y., Varma, M. E., Mcfadden, L. C., Brown, C., Guo, S., Higginbottom, S. C., Almo, and M. A., Fischbach. 2020. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582 (7813): 566–70. doi: 10.1038/s41586-020-2396-4.
García-Alonso, F. J., R., González-Barrio, G., Martín-Pozuelo, N., Hidalgo, I., Navarro-González, D., Masuero, E., Soini, U., Vrhovsek, and M. J., Periago. 2017. A study of the prebiotic-like effects of tomato juice consumption in rats with diet-induced non-alcoholic fatty liver disease (nafld). Food & Function 8 (10): 3542–52. doi: 10.1039/c7fo00393e.
Geier, A., D., Tiniakos, H., Denk, and M., Trauner. 2021. From the origin of nash to the future of metabolic fatty liver disease. Gut. 70 (8): 1570–1579. doi: 10.1136/gutjnl-2020-323202.
Ghosh, S., X., Yang, L., Wang, C., Zhang, and L., Zhao. 2021. Active phase prebiotic feeding alters gut microbiota, induces weight-independent alleviation of hepatic steatosis and serum cholesterol in high-fat diet-fed mice. Computational and Structural Biotechnology Journal 19: 448–58. doi: 10.1016/j.csbj.2020.12.011.
Giorgio, V., L., Miele, L., Principessa, F., Ferretti, M. P., Villa, V., Negro, A., Grieco, A., Alisi, and V., Nobili. 2014. Intestinal permeability is increased in children with non-alcoholic fatty liver disease, and correlates with liver disease severity. Digestive and Liver Disease 46 (6): 556–60. doi: 10.1016/j.dld.2014.02.010.
Gonzalez, F. J., C., Jiang, and A. D., Patterson. 2016. An intestinal microbiota-farnesoid x receptor axis modulates metabolic disease. Gastroenterology 151 (5): 845–59. doi: 10.1053/j.gastro.2016.08.057.
Grzych, G., L., Vonghia, M. A., Bout, J., Weyler, A., Verrijken, E., Dirinck, M. J., Chevalier Curt, L., Van Gaal, R., Paumelle, S., Francque, et al. 2020. Plasma bcaa changes in patients with nafld are sex dependent. The Journal of Clinical Endocrinology and Metabolism 105 (7): dgaa175. doi: 10.1210/clinem/dgaa175.
Guarner, C., J. M., González-Navajas, E., Sánchez, G., Soriando, R., Francés, M., Chiva, P., Zapater, S., Benlloch, C., Muñoz, S., Pascual, et al. 2006. The detection of bacterial DNA in blood of rats with ccl4-induced cirrhosis with ascites represents episodes of bacterial translocation. Hepatology (Baltimore, Md.) 44 (3): 633–9. doi: 10.1002/hep.21286.
Gupta, A., and S., Khanna. 2017. Fecal microbiota transplantation. JAMA 318 (1): 102. doi: 10.1001/jama.2017.6466.
Hintikka, J., S., Lensu, E., Mäkinen, S., Karvinen, M., Honkanen, J., Lindén, T., Garrels, S., Pekkala, and L., Lahti. 2021. Xylo-oligosaccharides in prevention of hepatic steatosis and adipose tissue inflammation: Associating taxonomic and metabolomic patterns in fecal microbiomes with biclustering. International Journal of Environmental Research and Public Health 18 (8): 4049. doi: 10.3390/ijerph18084049.
Honda, T., M., Ishigami, F., Luo, M., Lingyun, Y., Ishizu, T., Kuzuya, K., Hayashi, I., Nakano, T., Ishikawa, G. G., Feng, et al. 2017. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism 69: 177–87. doi: 10.1016/j.metabol.2016.12.013.
Hong, Y., L., Sheng, J., Zhong, X., Tao, W., Zhu, J., Ma, J., Yan, A., Zhao, X., Zheng, G., Wu, et al. 2021. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice. Gut Microbes 13 (1): 1–20. doi: 10.1080/19490976.2021.1930874.
Hoyles, L., J. M., Fernández-Real, M., Federici, M., Serino, J., Abbott, J., Charpentier, C., Heymes, J. L., Luque, E., Anthony, R. H., Barton, et al. 2018. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nature Medicine 24 (7): 1070–80. doi: 10.1038/s41591-018-0061-3.
Huang, J., W., Li, W., Liao, Q., Hao, D., Tang, D., Wang, Y., Wang, and G., Ge. 2020. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet. Food & Function 11 (11): 9924–35. doi: 10.1039/d0fo02152k.
Huang, F., X., Zheng, X., Ma, R., Jiang, W., Zhou, S., Zhou, Y., Zhang, S., Lei, S., Wang, J., Kuang, et al. 2019. Theabrownin from pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications 10 (1): 4971. doi: 10.1038/s41467-019-12896-x.
Inagaki, T., A., Moschetta, Y. K., Lee, L., Peng, G., Zhao, M., Downes, R. T., Yu, J. M., Shelton, J. A., Richardson, J. J., Repa, et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceedings of the National Academy of Sciences of the United States of America 103 (10): 3920–5. doi: 10.1073/pnas.0509592103.
Iwao, M., K., Gotoh, M., Arakawa, M., Endo, K., Honda, M., Seike, K., Murakami, and H., Shibata. 2020. Supplementation of branched-chain amino acids decreases fat accumulation in the liver through intestinal microbiota-mediated production of acetic acid. Scientific Reports 10 (1): 18768. doi: 10.1038/s41598-020-75542-3.
Jang, H. R., H. J., Park, D., Kang, H., Chung, M. H., Nam, Y., Lee, J. H., Park, and H. Y., Lee. 2019. A protective mechanism of probiotic lactobacillus against hepatic steatosis via reducing host intestinal fatty acid absorption. Experimental & Molecular Medicine 51 (8): 1–14. doi: 10.1038/s12276-019-0293-4.
Ji, Y., Y., Gao, H., Chen, Y., Yin, and W., Zhang. 2019. Indole-3-acetic acid alleviates nonalcoholic fatty liver disease in mice via attenuation of hepatic lipogenesis, and oxidative and inflammatory stress. Nutrients 11 (9): 2062. doi: 10.3390/nu11092062.
Jia, X., S., Lu, Z., Zeng, Q., Liu, Z., Dong, Y., Chen, Z., Zhu, Z., Hong, T., Zhang, G., Du, et al. 2020. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology (Baltimore, Md.) 71 (3): 893–906. doi: 10.1002/hep.30852.
Jiang, C., C., Xie, F., Li, L., Zhang, R. G., Nichols, K. W., Krausz, J., Cai, Y., Qi, Z. Z., Fang, S., Takahashi, et al. 2015. Intestinal farnesoid x receptor signaling promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation 125 (1): 386–402. doi: 10.1172/jci76738.
Jiao, A. R., H., Diao, B., Yu, J., He, J., Yu, P., Zheng, Z. Q., Huang, Y. H., Luo, J. Q., Luo, X. B., Mao, et al. 2018. Oral administration of short chain fatty acids could attenuate fat deposition of pigs. PloS One 13 (5): e0196867. doi: 10.1371/journal.pone.0196867.
Jia, L., C. R., Vianna, M., Fukuda, E. D., Berglund, C., Liu, C., Tao, K., Sun, T., Liu, M. J., Harper, C. E., Lee, et al. 2014. Hepatocyte toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nature Communications 5: 3878. doi: 10.1038/ncomms4878.
Jin, C. J., C., Sellmann, A. J., Engstler, D., Ziegenhardt, and I., Bergheim. 2015. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). The British Journal of Nutrition 114 (11): 1745–55. doi: 10.1017/s0007114515003621.
Junker, A. E., L. L., Gluud, G., Van Hall, J. J., Holst, F. K., Knop, and T., Vilsbøll. 2016. Effects of glucagon-like peptide-1 on glucagon secretion in patients with non-alcoholic fatty liver disease. Journal of Hepatology 64 (4): 908–15. doi: 10.1016/j.jhep.2015.11.014.
Koeth, R. A., Z., Wang, B. S., Levison, J. A., Buffa, E., Org, B. T., Sheehy, E. B., Britt, X., Fu, Y., Wu, L., Li, et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19 (5): 576–85. doi: 10.1038/nm.3145.
Kolodziejczyk, A. A., D., Zheng, O., Shibolet, and E., Elinav. 2019. The role of the microbiome in NAFLD and NASH. EMBO Molecular Medicine 11 (2): e9302. doi: 10.15252/emmm.201809302.
Krishnan, S., Y., Ding, N., Saedi, M., Choi, G. V., Sridharan, D. H., Sherr, M. L., Yarmush, R. C., Alaniz, A., Jayaraman, and K., Lee. 2018. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Reports 23 (4): 1099–111. doi: 10.1016/j.celrep.2018.03.109.
Kurdi, P., K., Kawanishi, K., Mizutani, and A., Yokota. 2006. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. Journal of Bacteriology 188 (5): 1979–86. doi: 10.1128/jb.188.5.1979-1986.2006.
Lang, S., and B., Schnabl. 2020. Microbiota and fatty liver disease-the known, the unknown, and the future. Cell Host & Microbe 28 (2): 233–44. doi: 10.1016/j.chom.2020.07.007.
Lau, J. K., X., Zhang, and J., Yu. 2017. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. The Journal of Pathology 241 (1): 36–44. doi: 10.1002/path.4829.
Le Roy, T., M., Llopis, P., Lepage, A., Bruneau, S., Rabot, C., Bevilacqua, P., Martin, C., Philippe, F., Walker, A., Bado, et al. 2013. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62 (12): 1787–94. doi: 10.1136/gutjnl-2012-303816.
Lee, G., H. J., You, J. S., Bajaj, S. K., Joo, J., Yu, S., Park, H., Kang, J. H., Park, J. H., Kim, D. H., Lee, et al. 2020a. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese nafld. Nature Communications 11 (1): 4982. doi: 10.1038/s41467-020-18754-5.
Lee, N. Y., S. J., Yoon, D. H., Han, H., Gupta, G. S., Youn, M. J., Shin, Y. L., Ham, M. J., Kwak, B. Y., Kim, J. S., Yu, et al. 2020b. Lactobacillus and pediococcus ameliorate progression of non-alcoholic fatty liver disease through modulation of the gut microbiome. Gut Microbes 11 (4): 882–99. doi: 10.1080/19490976.2020.1712984.
Lelouvier, B., F., Servant, S., Païssé, A. C., Brunet, S., Benyahya, M., Serino, C., Valle, M. R., Ortiz, J., Puig, M., Courtney, et al. 2016. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: A pilot analysis. Hepatology (Baltimore, Md.) 64 (6): 2015–27. doi: 10.1002/hep.28829.
Lensu, S., R., Pariyani, E., Mäkinen, B., Yang, W., Saleem, E., Munukka, M., Lehti, A., Driuchina, J., Lindén, M., Tiirola, et al. 2020. Prebiotic xylo-oligosaccharides ameliorate high-fat-diet-induced hepatic steatosis in rats. Nutrients 12 (11): 3225. doi: 10.3390/nu12113225.
Liang, W., K., Zhou, P., Jian, Z., Chang, Q., Zhang, Y., Liu, S., Xiao, and L., Zhang. 2021. Ginsenosides improve nonalcoholic fatty liver disease via integrated regulation of gut microbiota, inflammation and energy homeostasis. Frontiers in Pharmacology 12: 622841. doi: 10.3389/fphar.2021.622841.
Li, F., C., Jiang, K. W., Krausz, Y., Li, I., Albert, H., Hao, K. M., Fabre, J. B., Mitchell, A. D., Patterson, and F. J., Gonzalez. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid x receptor signalling and decreased obesity. Nature Communications 4: 2384. doi: 10.1038/ncomms3384.
Li, Y., J., Li, Q., Su, and Y., Liu. 2019. Sinapine reduces non-alcoholic fatty liver disease in mice by modulating the composition of the gut microbiota. Food & Function 10 (6): 3637–49. doi: 10.1039/C9FO00195F.
Liu, H. Y., T. B., Walden, D., Cai, D., Ahl, S., Bertilsson, M., Phillipson, M., Nyman, and L., Holm. 2019. Dietary fiber in bilberry ameliorates pre-obesity events in rats by regulating lipid depot, cecal short-chain fatty acid formation and microbiota composition. Nutrients 11 (6): 1350. doi: 10.3390/nu11061350.
Lorenzo-Zúñiga, V., R., Bartolí, R., Planas, A. F., Hofmann, B., Viñado, L. R., Hagey, J. M., Hernández, J., Mañé, M. A., Alvarez, V., Ausina, et al. 2003. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology 37 (3): 551–7. doi: 10.1053/jhep.2003.50116.
Luther, J., J. J., Garber, H., Khalili, M., Dave, S. S., Bale, R., Jindal, D. L., Motola, S., Luther, S., Bohr, S. W., Jeoung, et al. 2015. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cellular and Molecular Gastroenterology and Hepatology 1 (2): 222–32. doi: 10.1016/j.jcmgh.2015.01.001.
Ma, L., H., Li, J., Hu, J., Zheng, J., Zhou, R., Botchlett, D., Matthews, T., Zeng, L., Chen, X., Xiao, et al. 2020. Indole alleviates diet-induced hepatic steatosis and inflammation in a manner involving myeloid cell 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3. Hepatology (Baltimore, Md.) 72 (4): 1191–203. doi: 10.1002/hep.31115.
Mantovani, A., G., Petracca, G., Beatrice, A., Csermely, H., Tilg, C. D., Byrne, and G., Targher. 2021. Non-alcoholic fatty liver disease and increased risk of incident extrahepatic cancers: A meta-analysis of observational cohort studies. Gut. doi: 10.1136/gutjnl-2021-324191.
Martens, E. C., M., Neumann, and M. S., Desai. 2018. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nature Reviews. Microbiology 16 (8): 457–70. doi: 10.1038/s41579-018-0036-x.
Matsumoto, K., M., Ichimura, K., Tsuneyama, Y., Moritoki, H., Tsunashima, K., Omagari, M., Hara, I., Yasuda, H., Miyakawa, and K., Kikuchi. 2017. Fructo-oligosaccharides and intestinal barrier function in a methionine-choline-deficient mouse model of nonalcoholic steatohepatitis. PloS One 12 (6): e0175406. doi: 10.1371/journal.pone.0175406.
Mcpherson, S., E., Henderson, A. D., Burt, C. P., Day, and Q. M., Anstee. 2014. Serum immunoglobulin levels predict fibrosis in patients with non-alcoholic fatty liver disease. Journal of Hepatology 60 (5): 1055–62. doi: 10.1016/j.jhep.2014.01.010.
Michail, S., M., Lin, M. R., Frey, R., Fanter, O., Paliy, B., Hilbush, and N. V., Reo. 2015. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology 91 (2): 1–9. doi: 10.1093/femsec/fiu002.
Miura, K., Y., Kodama, S., Inokuchi, B., Schnabl, T., Aoyama, H., Ohnishi, J. M., Olefsky, D. A., Brenner, and E., Seki. 2010. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139 (1): 323–34.e7. doi: 10.1053/j.gastro.2010.03.052.
Miura, K., L., Yang, N., Van Rooijen, D. A., Brenner, H., Ohnishi, and E., Seki. 2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology (Baltimore, Md.) 57 (2): 577–89. doi: 10.1002/hep.26081.
Monga Kravetz, A., T., Testerman, B., Galuppo, J., Graf, B., Pierpont, S., Siebel, R., Feinn, and N., Santoro. 2020. Effect of gut microbiota and pnpla3 rs738409 variant on nonalcoholic fatty liver disease (nafld) in obese youth. Journal of Clinical Endocrinology and Metabolism 105 (10): dgaa382. doi: 10.1210/clinem/dgaa382.
Moro-Sibilot, L., P., Blanc, M., Taillardet, E., Bardel, C., Couillault, G., Boschetti, A., Traverse-Glehen, T., Defrance, D., Kaiserlian, and B., Dubois. 2016. Mouse and human liver contain immunoglobulin a-secreting cells originating from peyer’s patches and directed against intestinal antigens. Gastroenterology 151 (2): 311–23. doi: 10.1053/j.gastro.2016.04.014.
Morze, J., M., Koch, S. A., Aroner, M., Budoff, R. L., Mcclelland, K. J., Mukamal, and M. K., Jensen. 2020. Associations of hdl subspecies defined by apoc3 with non-alcoholic fatty liver disease: The multi-ethnic study of atherosclerosis. Journal of Clinical Medicine 9 (11): 3522. doi: 10.3390/jcm9113522.
Mouries, J., P., Brescia, A., Silvestri, I., Spadoni, M., Sorribas, R., Wiest, E., Mileti, M., Galbiati, P., Invernizzi, L., Adorini, et al. 2019. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. Journal of Hepatology 71 (6): 1216–28. doi: 10.1016/j.jhep.2019.08.005.
Mu, J., F., Tan, X., Zhou, and X., Zhao. 2020. Lactobacillus fermentum cqpc06 in naturally fermented pickles prevents non-alcoholic fatty liver disease by stabilizing the gut-liver axis in mice. Food & Function 11 (10): 8707–23. doi: 10.1039/d0fo01823f.
Mu, H. N., Q., Zhou, R. Y., Yang, W. Q., Tang, H. X., Li, S. M., Wang, J., Li, W. X., Chen, and J., Dong. 2021. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice. Food Research International (Ottawa, Ont.) 143: 110240. doi: 10.1016/j.foodres.2021.110240.
Newsome, P. N., K., Buchholtz, K., Cusi, M., Linder, T., Okanoue, V., Ratziu, A. J., Sanyal, A. S., Sejling, and S. A., Harrison. 2021. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. New England Journal of Medicine 384 (12): 1113–24. doi: 10.1056/NEJMoa2028395.
Noval Rivas, M., D., Wakita, M. K., Franklin, T. T., Carvalho, A., Abolhesn, A. C., Gomez, M. C., Fishbein, S., Chen, T. J., Lehman, K., Sato, et al. 2019. Intestinal permeability and iga provoke immune vasculitis linked to cardiovascular inflammation. Immunity 51 (3): 508–21.e6. doi: 10.1016/j.immuni.2019.05.021.
Okai, S., F., Usui, M., Ohta, H., Mori, K., Kurokawa, S., Matsumoto, T., Kato, E., Miyauchi, H., Ohno, and R., Shinkura. 2017. Intestinal iga as a modulator of the gut microbiota. Gut Microbes 8 (5): 486–92. doi: 10.1080/19490976.2017.1310357.
Ottosson, F., L., Brunkwall, U., Ericson, P. M., Nilsson, P., Almgren, C., Fernandez, O., Melander, and M., Orho-Melander. 2018. Connection between bmi-related plasma metabolite profile and gut microbiota. The Journal of Clinical Endocrinology & Metabolism 103 (4): 1491–501. doi: 10.1210/jc.2017-02114.
Pabst, O., and E., Slack. 2020. Iga and the intestinal microbiota: The importance of being specific. Mucosal Immunology 13 (1): 12–21. doi: 10.1038/s41385-019-0227-4.
Pachikian, B. D., A., Essaghir, J. B., Demoulin, E., Catry, A. M., Neyrinck, E. M., Dewulf, F. M., Sohet, L., Portois, L. A., Clerbaux, Y. A., Carpentier, et al. 2013. Prebiotic approach alleviates hepatic steatosis: Implication of fatty acid oxidative and cholesterol synthesis pathways. Molecular Nutrition & Food Research 57 (2): 347–59. doi: 10.1002/mnfr.201200364.
Pan, Q., S., Lin, Y., Li, L., Liu, X., Li, X., Gao, J., Yan, B., Gu, X., Chen, W., Li, et al. 2021. A novel glp-1 and fgf21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 63: 103202. doi: 10.1016/j.ebiom.2020.103202.
Park, E. J., Y. S., Lee, S. M., Kim, G. S., Park, Y. H., Lee, D. Y., Jeong, J., Kang, and H. J., Lee. 2020. Beneficial effects of lactobacillus plantarum strains on non-alcoholic fatty liver disease in high fat/high fructose diet-fed rats. Nutrients 12 (2): 542. doi: 10.3390/nu12020542.
Parséus, A., N., Sommer, F., Sommer, R., Caesar, A., Molinaro, M., Ståhlman, T. U., Greiner, R., Perkins, and F., Bäckhed. 2017. Microbiota-induced obesity requires farnesoid x receptor. Gut 66 (3): 429–37. doi: 10.1136/gutjnl-2015-310283.
Pedersen, H. K., V., Gudmundsdottir, H. B., Nielsen, T., Hyotylainen, T., Nielsen, B. A., Jensen, K., Forslund, F., Hildebrand, E., Prifti, G., Falony, et al. 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535 (7612): 376–81. doi: 10.1038/nature18646.
Ponziani, F. R., S., Bhoori, C., Castelli, L., Putignani, L., Rivoltini, F., Del Chierico, M., Sanguinetti, D., Morelli, F., Paroni Sterbini, V., Petito, et al. 2019. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology (Baltimore, Md.) 69 (1): 107–20. doi: 10.1002/hep.30036.
Porras, D., E., Nistal, S., Martínez-Flórez, J. L., Olcoz, R., Jover, F., Jorquera, J., González-Gallego, M. V., García-Mediavilla, and S., Sánchez-Campos. 2019. Functional interactions between gut microbiota transplantation, quercetin, and high-fat diet determine non-alcoholic fatty liver disease development in germ-free mice. Molecular Nutrition & Food Research 63 (8): e1800930 doi: 10.1002/mnfr.201800930.
Porras, D., E., Nistal, S., Martínez-Flórez, S., Pisonero-Vaquero, J. L., Olcoz, R., Jover, J., González-Gallego, M. V., García-Mediavilla, and S., Sánchez-Campos. 2017. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radical Biology and Medicine 102: 188–202. doi: 10.1016/j.freeradbiomed.2016.11.037.
Puri, P., K., Daita, A., Joyce, F., Mirshahi, P. K., Santhekadur, S., Cazanave, V. A., Luketic, M. S., Siddiqui, S., Boyett, H. K., Min, et al. 2018. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology (Baltimore, Md.) 67 (2): 534–48. doi: 10.1002/hep.29359.
Reigstad, C. S., C. E., Salmonson, J. F., Rainey, 3rd, J. H., Szurszewski, D. R., Linden, J. L., Sonnenburg, G., Farrugia, and P. C., Kashyap. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. The FASEB Journal 29 (4): 1395–403. doi: 10.1096/fj.14-259598.
Ridlon, J. M., D. J., Kang, P. B., Hylemon, and J. S., Bajaj. 2014. Bile acids and the gut microbiome. Current Opinion in Gastroenterology 30 (3): 332–8. doi: 10.1097/mog.0000000000000057.
Rivera, C. A., L., Gaskin, M., Allman, J., Pang, K., Brady, P., Adegboyega, and K., Pruitt. 2010. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis. BMC Gastroenterology 10: 52. doi: 10.1186/1471-230x-10-52.
Robinson, M. W., C., Harmon, and C., O’farrelly. 2016. Liver immunology and its role in inflammation and homeostasis. Cellular & Molecular Immunology 13 (3): 267–76. doi: 10.1038/cmi.2016.3.
Rodrigues, R. R., M., Gurung, Z., Li, M., García-Jaramillo, R., Greer, C., Gaulke, F., Bauchinger, H., You, J. W., Pederson, S., Vasquez-Perez, et al. 2021. Transkingdom interactions between lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nature Communications 12 (1): 101. doi: 10.1038/s41467-020-20313-x.
Rustgi, V. K., Y., Li, K., Gupta, C. D., Minacapelli, A., Bhurwal, C., Catalano, and M. I., Elsaid. 2021. Bariatric surgery reduces cancer risk in adults with nonalcoholic fatty liver disease and severe obesity. Gastroenterology 161 (1): 171–84.e10. doi: 10.1053/j.gastro.2021.03.021.
Salunkhe, S. A., D., Chitkara, R. I., Mahato, and A., Mittal. 2021. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Advanced Drug Delivery Reviews 173: 394–415. doi: 10.1016/j.addr.2021.04.003.
Sanna, S., N. R., Van Zuydam, A., Mahajan, A., Kurilshikov, A., Vich Vila, U., Võsa, Z., Mujagic, A. a M., Masclee, D., Jonkers, M., Oosting, et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics 51 (4): 600–5. doi: 10.1038/s41588-019-0350-x.
Sayin, S. I., A., Wahlstrom, J., Felin, S., Jantti, H. U., Marschall, K., Bamberg, B., Angelin, T., Hyotylainen, M., Oresic, and F., Backhed. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring fxr antagonist. Cell Metabolism 17 (2): 225–35. doi: 10.1016/j.cmet.2013.01.003.
Schierwagen, R., C., Alvarez-Silva, M. S. A., Madsen, C. C., Kolbe, C., Meyer, D., Thomas, F. E., Uschner, F., Magdaleno, C., Jansen, A., Pohlmann, et al. 2019. Circulating microbiome in blood of different circulatory compartments. Gut 68 (3): 578–80. doi: 10.1136/gutjnl-2018-316227.
Schwabe, R. F., and T. F., Greten. 2020. Gut microbiome in hcc - mechanisms, diagnosis and therapy. Journal of Hepatology 72 (2): 230–8. doi: 10.1016/j.jhep.2019.08.016.
Scorletti, E., P. R., Afolabi, E. A., Miles, D. E., Smith, A., Almehmadi, A., Alshathry, C. E., Childs, S., Del Fabbro, J., Bilson, H. E., Moyses, et al. 2020. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology 158 (6): 1597–610.e7. doi: 10.1053/j.gastro.2020.01.031.
Scott, S. A., J., Fu, and P. V., Chang. 2020. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proceedings of the National Academy of Sciences of the United States of America 117 (32): 19376–87. doi: 10.1073/pnas.2000047117.
Seki, E., S., De Minicis, C. H., Osterreicher, J., Kluwe, Y., Osawa, D. A., Brenner, and R. F., Schwabe. 2007. Tlr4 enhances tgf-beta signaling and hepatic fibrosis. Nature Medicine 13 (11): 1324–32. doi: 10.1038/nm1663.
Sharpton, S. R., V., Ajmera, and R., Loomba. 2019. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: From composition to function. Clinical Gastroenterology and Hepatology 17 (2): 296–306. doi: 10.1016/j.cgh.2018.08.065.
Sharpton, S. R., B., Schnabl, R., Knight, and R., Loomba. 2021. Current concepts, opportunities, and challenges of gut microbiome-based personalized medicine in nonalcoholic fatty liver disease. Cell Metabolism 33 (1): 21–32. doi: 10.1016/j.cmet.2020.11.010.
Shen, F., R. D., Zheng, X. Q., Sun, W. J., Ding, X. Y., Wang, and J. G., Fan. 2017. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary & Pancreatic Diseases International 16 (4): 375–81. doi: 10.1016/S1499-3872(17)60019-5.
Shi, Z., G., Chen, Z., Cao, F., Wu, H., Lei, C., Chen, Y., Song, C., Liu, J., Li, J., Zhou, et al. 2021. Gut microbiota and its metabolite deoxycholic acid contribute to sucralose consumption-induced nonalcoholic fatty liver disease. Journal of Agricultural and Food Chemistry 69 (13): 3982–91. doi: 10.1021/acs.jafc.0c07467.
Soderborg, T. K., S. E., Clark, C. E., Mulligan, R. C., Janssen, L., Babcock, D., Ir, B., Young, N., Krebs, D. J., Lemas, L. K., Johnson, et al. 2018. The gut microbiota in infants of obese mothers increases inflammation and susceptibility to nafld. Nature Communications 9 (1): 4462. doi: 10.1038/s41467-018-06929-0.
Sokol, H., P., Seksik, J. P., Furet, O., Firmesse, I., Nion-Larmurier, L., Beaugerie, J., Cosnes, G., Corthier, P., Marteau, and J., Doré. 2009. Low counts of faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Disease 15 (8): 1183–9. doi: 10.1002/ibd.20903.
Spencer, M. D., T. J., Hamp, R. W., Reid, L. M., Fischer, S. H., Zeisel, and A. A., Fodor. 2011. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140 (3): 976–86. doi: 10.1053/j.gastro.2010.11.049.
Stachowska, E., P., Portincasa, D., Jamioł-Milc, D., Maciejewska-Markiewicz, and K., Skonieczna-Żydecka. 2020. The relationship between prebiotic supplementation and anthropometric and biochemical parameters in patients with nafld-a systematic review and meta-analysis of randomized controlled trials. Nutrients 12 (11): 3460. doi: 10.3390/nu12113460.
Szabo, G., A., Velayudham, L., Romics, Jr., and P., Mandrekar. 2005. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: The role of toll-like receptors 2 and 4. Alcoholism, Clinical and Experimental Research 29 (11 Suppl): 140S–5S. doi: 10.1097/01.alc.0000189287.83544.33.
Takayama, S., K., Katada, T., Takagi, T., Iida, T., Ueda, K., Mizushima, Y., Higashimura, M., Morita, T., Okayama, K., Kamada, et al. 2021. Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis. World Journal of Gastroenterology 27 (18): 2160–76. doi: 10.3748/wjg.v27.i18.2160.
Tan, X., Y., Liu, J., Long, S., Chen, G., Liao, S., Wu, C., Li, L., Wang, W., Ling, and H., Zhu. 2019. Trimethylamine n-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid x receptor signaling in nonalcoholic fatty liver disease. Molecular Nutrition & Food Research 63 (17): e1900257. doi: 10.1002/mnfr.201900257.
Ullmer, C., R., Alvarez Sanchez, U., Sprecher, S., Raab, P., Mattei, H., Dehmlow, S., Sewing, A., Iglesias, J., Beauchamp, and K., Conde-Knape. 2013. Systemic bile acid sensing by g protein-coupled bile acid receptor 1 (gpbar1) promotes pyy and glp-1 release. British Journal of Pharmacology 169 (3): 671–84. doi: 10.1111/bph.12158.
Venkatesh, M., S., Mukherjee, H., Wang, H., Li, K., Sun, A. P., Benechet, Z., Qiu, L., Maher, M. R., Redinbo, R. S., Phillips, et al. 2014. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor pxr and toll-like receptor 4. Immunity 41 (2): 296–310. doi: 10.1016/j.immuni.2014.06.014.
Volynets, V., J., Machann, M. A., Küper, I. B., Maier, A., Spruss, A., Königsrainer, S. C., Bischoff, and I., Bergheim. 2013. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (nafld): A pilot study. European Journal of Nutrition 52 (2): 527–35. doi: 10.1007/s00394-012-0355-z.
Wahlström, A., S. I., Sayin, H. U., Marschall, and F., Bäckhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism 24 (1): 41–50. doi: 10.1016/j.cmet.2016.05.005.
Wang, B., X., Jiang, M., Cao, J., Ge, Q., Bao, L., Tang, Y., Chen, and L., Li. 2016. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Scientific Reports 6: 32002. doi: 10.1038/srep32002.
Wang, G., T., Jiao, Y., Xu, D., Li, Q., Si, J., Hao, J., Zhao, H., Zhang, and W., Chen. 2020a. Bifidobacterium adolescentis and lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food & Function 11 (7): 6115–27. doi: 10.1039/c9fo02905b.
Wang, R., R., Tang, B., Li, X., Ma, B., Schnabl, and H., Tilg. 2021. Gut microbiome, liver immunology, and liver diseases. Cellular & Molecular Immunology 18 (1): 4–17. doi: 10.1038/s41423-020-00592-6.
Wang, W., A. L., Xu, Z. C., Li, Y., Li, S. F., Xu, H. C., Sang, and F., Zhi. 2020b. Combination of probiotics and salvia miltiorrhiza polysaccharide alleviates hepatic steatosis via gut microbiota modulation and insulin resistance improvement in high fat-induced nafld mice. Diabetes & Metabolism Journal 44 (2): 336–48. doi: 10.4093/dmj.2019.0042.
Watanabe, M., S. M., Houten, L., Wang, A., Moschetta, D. J., Mangelsdorf, R. A., Heyman, D. D., Moore, and J., Auwerx. 2004. Bile acids lower triglyceride levels via a pathway involving fxr, shp, and srebp-1c. The Journal of Clinical Investigation 113 (10): 1408–18. doi: 10.1172/jci21025.
Weber, D., P. J., Oefner, A., Hiergeist, J., Koestler, A., Gessner, M., Weber, J., Hahn, D., Wolff, F., Stämmler, R., Spang, et al. 2015. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126 (14): 1723–8. doi: 10.1182/blood-2015-04-638858.
Willemsen, L. E., M. A., Koetsier, S. J., Van Deventer, and E. A., Van Tol. 2003. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin e(1) and e(2) production by intestinal myofibroblasts. Gut 52 (10): 1442–7. doi: 10.1136/gut.52.10.1442.
Wu, W., M., Sun, F., Chen, A. T., Cao, H., Liu, Y., Zhao, X., Huang, Y., Xiao, S., Yao, Q., Zhao, et al. 2017. Microbiota metabolite short-chain fatty acid acetate promotes intestinal iga response to microbiota which is mediated by gpr43. Mucosal Immunology 10 (4): 946–56. doi: 10.1038/mi.2016.114.
Xia, W., I., Khan, X. A., Li, G., Huang, Z., Yu, W. K., Leong, R., Han, L. T., Ho, and W. L., Wendy Hsiao. 2020. Adaptogenic flower buds exert cancer preventive effects by enhancing the scfa-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacological Research 159: 104809. doi: 10.1016/j.phrs.2020.104809.
Xue, C., Y., Li, H., Lv, L., Zhang, C., Bi, N., Dong, A., Shan, and J., Wang. 2021. Oleanolic acid targets the gut-liver axis to alleviate metabolic disorders and hepatic steatosis. Journal of Agricultural and Food Chemistry 69 (28): 7884–97. doi: 10.1021/acs.jafc.1c02257.
Yang, Y., Y., Chang, Y., Wu, H., Liu, Q., Liu, Z., Kang, M., Wu, H., Yin, and J., Duan. 2021. A homogeneous polysaccharide from lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. International Journal of Biological Macromolecules 183: 2074–87. doi: 10.1016/j.ijbiomac.2021.05.209.
Yang, J. M., Y., Sun, M., Wang, X. L., Zhang, S. J., Zhang, Y. S., Gao, L., Chen, M. Y., Wu, L., Zhou, Y. M., Zhou, et al. 2019. Regulatory effect of a Chinese herbal medicine formula on non-alcoholic fatty liver disease. World Journal of Gastroenterology 25 (34): 5105–19. doi: 10.3748/wjg.v25.i34.5105.
Yano, J. M., K., Yu, G. P., Donaldson, G. G., Shastri, P., Ann, L., Ma, C. R., Nagler, R. F., Ismagilov, S. K., Mazmanian, and E. Y., Hsiao. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2): 264–76. doi: 10.1016/j.cell.2015.02.047.
Ye, H., Q., Li, Z., Zhang, M., Sun, C., Zhao, and T., Zhang. 2017. Effect of a novel potential probiotic lactobacillus paracasei jlus66 isolated from fermented milk on nonalcoholic fatty liver in rats. Food & Function 8 (12): 4539–46. doi: 10.1039/c7fo01108c.
Ye, J., L., Lv, W., Wu, Y., Li, D., Shi, D., Fang, F., Guo, H., Jiang, R., Yan, W., Ye, et al. 2018a. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Frontiers in Microbiology 9: 1967. doi: 10.3389/fmicb.2018.01967.
Ye, J. Z., Y. T., Li, W. R., Wu, D., Shi, D. Q., Fang, L. Y., Yang, X. Y., Bian, J. J., Wu, Q., Wang, X. W., Jiang, et al. 2018b. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis. World Journal of Gastroenterology 24 (23): 2468–81. doi: 10.3748/wjg.v24.i23.2468.
Yiu, J. H. C., K. S., Chan, J., Cheung, J., Li, Y., Liu, Y., Wang, W. W. L., Fung, J., Cai, S. W. M., Cheung, B., Dorweiler, et al. 2020. Gut microbiota-associated activation of tlr5 induces apolipoprotein a1 production in the liver. Circulation Research 127 (10): 1236–52. doi: 10.1161/circresaha.120.317362.
Zarate, M. A., L. M., Nguyen, R. K., De Dios, L., Zheng, and C. J., Wright. 2020. Maturation of the acute hepatic tlr4/nf-κb mediated innate immune response is p65 dependent in mice. Frontiers in Immunology 11: 1892. doi: 10.3389/fimmu.2020.01892.
Zhang, Z., X., Chen, and B., Cui. 2021. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food & Function 12 (10): 4504–18. doi: 10.1039/d1fo00249j.
Zhang, Z., C., Ran, Q. W., Ding, H. L., Liu, M. X., Xie, Y. L., Yang, Y. D., Xie, C. C., Gao, H. L., Zhang, and Z. G., Zhou. 2019. Ability of prebiotic polysaccharides to activate a hif1α-antimicrobial peptide axis determines liver injury risk in zebrafish. Communications Biology 2: 274. doi: 10.1038/s42003-019-0526-z.
Zhang, Z., X., Xu, W., Tian, R., Jiang, Y., Lu, Q., Sun, R., Fu, Q., He, J., Wang, Y., Liu, et al. 2020. Arrb1 inhibits non-alcoholic steatohepatitis progression by promoting gdf15 maturation. Journal of Hepatology 72 (5): 976–89. doi: 10.1016/j.jhep.2019.12.004.
Zhang, F., S., Zhao, W., Yan, Y., Xia, X., Chen, W., Wang, J., Zhang, C., Gao, C., Peng, F., Yan, et al. 2016. Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine 13: 157–67. doi: 10.1016/j.ebiom.2016.10.013.
Zhao, S., C., Jang, J., Liu, K., Uehara, M., Gilbert, L., Izzo, X., Zeng, S., Trefely, S., Fernandez, A., Carrer, et al. 2020a. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 579 (7800): 586–91. doi: 10.1038/s41586-020-2101-7.
Zhao, Z., L., Chen, Y., Zhao, C., Wang, C., Duan, G., Yang, C., Niu, and S., Li. 2020b. Lactobacillus plantarum na136 ameliorates nonalcoholic fatty liver disease by modulating gut microbiota, improving intestinal barrier integrity, and attenuating inflammation. Applied Microbiology and Biotechnology 104 (12): 5273–82. doi: 10.1007/s00253-020-10633-9.
Zhao, C., L., Liu, Q., Liu, F., Li, L., Zhang, F., Zhu, T., Shao, S., Barve, Y., Chen, X., Li, et al. 2019a. Fibroblast growth factor 21 is required for the therapeutic effects of lactobacillus rhamnosus gg against fructose-induced fatty liver in mice. Molecular Metabolism 29: 145–57. doi: 10.1016/j.molmet.2019.08.020.
Zhao, Z. H., F. Z., Xin, Y., Xue, Z., Hu, Y., Han, F., Ma, D., Zhou, X. L., Liu, A., Cui, Z., Liu, et al. 2019b. Indole-3-propionic acid inhibits gut dysbiosis and endotoxin leakage to attenuate steatohepatitis in rats. Experimental & Molecular Medicine 51 (9): 1–14. doi: 10.1038/s12276-019-0304-5.
Zhao, Z. H., F. Z., Xin, D., Zhou, Y. Q., Xue, X. L., Liu, R. X., Yang, Q., Pan, and J. G., Fan. 2019c. Trimethylamine n-oxide attenuates high-fat high-cholesterol diet-induced steatohepatitis by reducing hepatic cholesterol overload in rats. World Journal of Gastroenterology 25 (20): 2450–62. doi: 10.3748/wjg.v25.i20.2450.
Zhou, X., D., Han, R., Xu, S., Li, H., Wu, C., Qu, F., Wang, X., Wang, and Y., Zhao. 2014. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet. PloS One 9 (12): e115148. doi: 10.1371/journal.pone.0115148.
Zhou, D., Q., Pan, F., Shen, H. X., Cao, W. J., Ding, Y. W., Chen, and J. G., Fan. 2017a. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Scientific Reports 7 (1): 1529. doi: 10.1038/s41598-017-01751-y.
Zhou, D., Q., Pan, F. Z., Xin, R. N., Zhang, C. X., He, G. Y., Chen, C., Liu, Y. W., Chen, and J. G., Fan. 2017b. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology 23 (1): 60–75. doi: 10.3748/wjg.v23.i1.60.
Zhu, L., S. S., Baker, C., Gill, W., Liu, R., Alkhouri, R. D., Baker, and S. R., Gill. 2013. Characterization of gut microbiomes in nonalcoholic steatohepatitis (nash) patients: A connection between endogenous alcohol and nash. Hepatology (Baltimore, Md.) 57 (2): 601–9. doi: 10.1002/hep.29. 3.