Animals; Female; Immunity, Mucosal/immunology; Macrophages/immunology; Macrophages/metabolism; Mammary Glands, Animal/growth & development; Mammary Glands, Animal/immunology; Sheep, Domestic/growth & development; Sheep, Domestic/immunology; Stromal Cells/immunology; Stromal Cells/metabolism; Immunity, Mucosal; Macrophages; Mammary Glands, Animal; Sheep, Domestic; Stromal Cells; Medicine (miscellaneous); Biochemistry, Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all); General Agricultural and Biological Sciences; General Biochemistry, Genetics and Molecular Biology
Abstract :
[en] The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs. Ki67 expression is polarised to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit periodicity and considerably increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. Intraepithelial T lymphocytes are more numerous in older lambs. Stromal hotspots of Ki67 expression colocalize with immune cell aggregates that exhibit distinct organisation consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and constitutes a valuable model system that provides new insights into postnatal breast development.
Disciplines :
Veterinary medicine & animal health Anatomy (cytology, histology, embryology...) & physiology
Author, co-author :
Nagy, Dorottya ; Université de Liège - ULiège ; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
Gillis, Clare M C; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
Davies, Katie; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
Fowden, Abigail L; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
Rees, Paul; College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Swansea, UK ; Broad Institute of MIT and Harvard, Cambridge, MA, USA
Wills, John W ; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. jw2020@cam.ac.uk
Hughes, Katherine ; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK. kh387@cam.ac.uk
Language :
English
Title :
Developing ovine mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment.
This work was supported by a grant from the British Veterinary Association Animal Welfare Foundation Norman Hayward Fund awarded to KH [grant number NHF_2016_03_KH]. JWW is grateful to Girton College and the University of Cambridge Herchel-Smith Fund for supporting him with Fellowships. The authors would like to acknowledge the UK Engineering and Physical Sciences Research Council (grant EP/ N013506/1), and the UK Biotechnology and Biological Sciences Research Council (grant number BB/P026818/1), both awarded to PR, for supporting the work. The authors gratefully acknowledge the excellent technical expertise of Debbie Sabin in the preparation of histology sections and unstained tissue sections. Some confocal microscopy images were acquired using equipment at the Cambridge Advanced Imaging Centre (CAIC) and the authors thank members of the CAIC for their advice and support. The Ethics and Welfare Committee of the Department of Veterinary Medicine, University of Cambridge, reviewed the study plan relating to the use of ruminant tissue collected following post mortem examination for the study of mammary gland biology (reference: CR223) and the work of this committee is gratefully recognised. The data detailed in this manuscript were presented in part at the 2020 Winter Meeting of the Pathological Society of Great Britain & Ireland (presentation: 21 January 2020), the 2020 American College of Veterinary Pathologists Annual Meeting (presentation: 30 October 2020), and the 2021 Anatomical Society Virtual Winter Meeting (presentation: 7 January 2021).
Brady, N. J., Chuntova, P. & Schwertfeger, K. L. Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators Inflamm. https://doi.org/10.1155/2016/4549676 (2016).
Wilson, G. J., Fukuoka, A., Vidler, F. & Graham, G. J. Diverse myeloid cells are recruited to the developing and inflamed mammary gland. bioRxiv https://doi.org/10.1101/2020.09.21.306365 (2020).
Jappinen, N. et al. Fetal-derived macrophages dominate in adult mammary glands. Nat. Commun. 10, 281 (2019). DOI: 10.1038/s41467-018-08065-1
Gouon-Evans, V., Rothenberg, M. E. & Pollard, J. W. Postnatal mammary gland development requires macrophages and eosinophils. Development 127, 2269–2282 (2000). DOI: 10.1242/dev.127.11.2269
Chua, A. C., Hodson, L. J., Moldenhauer, L. M., Robertson, S. A. & Ingman, W. V. Dual roles for macrophages in ovarian cycle-associated development and remodelling of the mammary gland epithelium. Development 137, 4229–4238 (2010). DOI: 10.1242/dev.059261
Brady, N. J., Farrar, M. A. & Schwertfeger, K. L. STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development. Dev. Biol. 428, 232–244 (2017). DOI: 10.1016/j.ydbio.2017.06.007
Hitchcock, J. R., Hughes, K., Harris, O. B. & Watson, C. J. Dynamic architectural interplay between leucocytes and mammary epithelial cells. FEBS J. 287, 250–266 (2020). DOI: 10.1111/febs.15126
Dawson, C. A. et al. Tissue-resident ductal macrophages survey the mammary epithelium and facilitate tissue remodelling. Nat. Cell Biol. 22, 546–558 (2020). DOI: 10.1038/s41556-020-0505-0
Stewart, T. A., Hughes, K., Hume, D. A. & Davis, F. M. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev. Biol. 7, 250 (2019). DOI: 10.3389/fcell.2019.00250
Wilson, G. J. et al. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development 144, 74–82 (2017).
Wilson, G. J. et al. Chemokine receptors coordinately regulate macrophage dynamics and mammary gland development. Development 147, https://doi.org/10.1242/dev.187815 (2020).
Wang, Y. et al. Tissue-resident macrophages promote extracellular matrix homeostasis in the mammary gland stroma of nulliparous mice. Elife 9, https://doi.org/10.7554/eLife.57438 (2020).
Plaks, V. et al. Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev. Cell 34, 493–504 (2015). DOI: 10.1016/j.devcel.2015.07.015
Betts, C. B. et al. Mucosal immunity in the female murine mammary gland. J. Immunol. 201, 734–746 (2018). DOI: 10.4049/jimmunol.1800023
Howard, B. A. & Gusterson, B. A. Human breast development. J. Mammary Gland Biol. Neoplasia 5, 119–137 (2000). DOI: 10.1023/A:1026487120779
Degnim, A. C. et al. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Breast Cancer Res. Treat. 144, 539–549 (2014). DOI: 10.1007/s10549-014-2896-8
Osin, P. P., Anbazhagan, R., Bartkova, J., Nathan, B. & Gusterson, B. A. Breast development gives insights into breast disease. Histopathology 33, 275–283 (1998). DOI: 10.1046/j.1365-2559.1998.00479.x
Gusterson, B. A. & Stein, T. Human breast development. Semin Cell Dev. Biol. 23, 567–573 (2012). DOI: 10.1016/j.semcdb.2012.03.013
Hovey, R. C., McFadden, T. B. & Akers, R. M. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J. Mammary Gland Biol. Neoplasia 4, 53–68 (1999). DOI: 10.1023/A:1018704603426
Hughes, K. & Watson, C. J. The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: A One Health focus. J. Mammary Gland Biol. Neoplasia 23, 27–41 (2018). DOI: 10.1007/s10911-018-9395-1
Rowson, A. R., Daniels, K. M., Ellis, S. E. & Hovey, R. C. Growth and development of the mammary glands of livestock: a veritable barnyard of opportunities. Semin Cell Dev. Biol. 23, 557–566 (2012). DOI: 10.1016/j.semcdb.2012.03.018
Hughes, K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. Semin Cell Dev. Biol. 114, 186–195 (2021). DOI: 10.1016/j.semcdb.2020.09.010
Akers, R. M. Triennial Lactation Symposium/BOLFA: plasticity of mammary development in the prepubertal bovine mammary gland. J. Anim. Sci. 95, 5653–5663 (2017). DOI: 10.2527/jas2017.1792
Geiger, A. J. Review: the pre-pubertal bovine mammary gland: unlocking the potential of the future herd. Animal 13, s4–s10 (2019). DOI: 10.1017/S1751731119001204
Meyer, M. J., Capuco, A. V., Ross, D. A., Lintault, L. M. & Van Amburgh, M. E. Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition. J. Dairy Sci. 89, 4289–4297 (2006). DOI: 10.3168/jds.S0022-0302(06)72475-4
Ellis, S. & Capuco, A. V. Cell proliferation in bovine mammary epithelium: identification of the primary proliferative cell population. Tissue Cell 34, 155–163 (2002). DOI: 10.1016/S0040-8166(02)00025-3
Capuco, A. V., Ellis, S., Wood, D. L., Akers, R. M. & Garrett, W. Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 34, 143–154 (2002). DOI: 10.1016/S0040-8166(02)00024-1
Velayudhan, B. T. et al. Effect of staged ovariectomy on measures of mammary growth and development in prepubertal dairy heifers. Animal 6, 941–951 (2012). DOI: 10.1017/S1751731111002333
Beaudry, K. L., Parsons, C. L., Ellis, S. E. & Akers, R. M. Localization and quantitation of macrophages, mast cells, and eosinophils in the developing bovine mammary gland. J. Dairy Sci. 99, 796–804 (2016). DOI: 10.3168/jds.2015-9972
Morrison, J. L. et al. Improving pregnancy outcomes in humans through studies in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315, R1123–R1153 (2018). DOI: 10.1152/ajpregu.00391.2017
Anderson, R. R. Mammary gland growth in sheep. J. Anim. Sci. 41, 118–123 (1975). DOI: 10.2527/jas1975.411118x
Hovey, R. C., Auldist, D. E., Mackenzie, D. D. & McFadden, T. B. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J. Anim. Sci. 78, 2177–2185 (2000). DOI: 10.2527/2000.7882177x
Ellis, S., McFadden, T. B. & Akers, R. M. Prepuberal ovine mammary development is unaffected by ovariectomy. Domest. Anim. Endocrinol. 15, 217–225 (1998). DOI: 10.1016/S0739-7240(98)00009-5
Cassidy, J. W., Caldas, C. & Bruna, A. Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res. 75, 2963–2968 (2015). DOI: 10.1158/0008-5472.CAN-15-0727
Safayi, S. et al. Myoepithelial cell differentiation markers in prepubertal bovine mammary gland: effect of ovariectomy. J. Dairy Sci. 95, 2965–2976 (2012). DOI: 10.3168/jds.2011-4690
Sinha, Y. N. & Tucker, H. A. Mammary development and pituitary prolactin level of heifers from birth through puberty and during the estrous cycle. J. Dairy Sci. 52, 507–512 (1969). DOI: 10.3168/jds.S0022-0302(69)86595-1
Bankfalvi, A. et al. Different proliferative activity of the glandular and myoepithelial lineages in benign proliferative and early malignant breast diseases. Mod. Pathol. 17, 1051–1061 (2004). DOI: 10.1038/modpathol.3800082
Stevenson, A. J. et al. Multiscale imaging of basal cell dynamics in the functionally mature mammary gland. Proc. Natl Acad. Sci. USA 117, 26822–26832 (2020). DOI: 10.1073/pnas.2016905117
Hvid, H., Thorup, I., Sjogren, I., Oleksiewicz, M. B. & Jensen, H. E. Mammary gland proliferation in female rats: effects of the estrous cycle, pseudo-pregnancy and age. Exp. Toxicol. Pathol. 64, 321–332 (2012). DOI: 10.1016/j.etp.2010.09.005
Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y. & Kohsaka, S. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell Sci. 113, 3073–3084 (2000). DOI: 10.1242/jcs.113.17.3073
Hardwick, L. J. A., Phythian, C. J., Fowden, A. L. & Hughes, K. Size of supernumerary teats in sheep correlates with complexity of the anatomy and microenvironment. J. Anat. 236, 954–962 (2020). DOI: 10.1111/joa.13149
Cheroutre, H., Lambolez, F. & Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 11, 445–456 (2011). DOI: 10.1038/nri3007
Hughes, K. & Watson, C. J. Sinus-like dilatations of the mammary milk ducts, Ki67 expression, and CD3-positive T lymphocyte infiltration, in the mammary gland of wild European rabbits during pregnancy and lactation. J. Anat. 233, 266–273 (2018). DOI: 10.1111/joa.12824
Restucci, B. et al. Histopathological and microbiological findings in buffalo chronic mastitis: evidence of tertiary lymphoid structures. J. Vet. Sci. 20, e28 (2019). DOI: 10.4142/jvs.2019.20.e28
Pipi, E. et al. Tertiary lymphoid structures: autoimmunity goes local. Front Immunol. 9, 1952 (2018). DOI: 10.3389/fimmu.2018.01952
Ager, A. High endothelial venules and other blood vessels: critical regulators of lymphoid organ development and function. Front Immunol. 8, 45 (2017). DOI: 10.3389/fimmu.2017.00045
Bomfim, G. F., Merighe, G. K. F., de Oliveira, S. A. & Negrao, J. A. Effect of acute stressors, adrenocorticotropic hormone administration, and cortisol release on milk yield, the expression of key genes, proliferation, and apoptosis in goat mammary epithelial cells. J. Dairy Sci. 101, 6486–6496 (2018). DOI: 10.3168/jds.2017-14123
Hwang, W. S., Bae, J. H. & Yeom, S. C. Premature mammary gland involution with repeated corticosterone injection in interleukin 10-deficient mice. Biosci. Biotechnol. Biochem. 80, 2318–2324 (2016). DOI: 10.1080/09168451.2016.1214556
Davies, K. L. et al. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. J. Physiol. 598, 2453–2468 (2020). DOI: 10.1113/JP279194
Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014). DOI: 10.1016/j.cell.2014.03.042
Lloyd-Lewis, B. et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 18, 127 (2016). DOI: 10.1186/s13058-016-0754-9
Peng, H., Bria, A., Zhou, Z., Iannello, G. & Long, F. Extensible visualization and analysis for multidimensional images using Vaa3D. Nat. Protoc. 9, 193–208 (2014). DOI: 10.1038/nprot.2014.011
Macenko, M. et al. A method for normalizing histology slides for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 1107–1110 (IEEE, 2009).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (IEEE, 2016).
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. 833–851 (Springer International Publishing).
Ronneberger, O., Fischer, P. & Brox, T. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation 234–241 (Springer International Publishing, 2018).
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006). DOI: 10.1186/gb-2006-7-10-r100
Wills, J. W. et al. Image-based cell profiling enables quantitative tissue microscopy in gastroenterology. Cytometry A 97, 1222–1237 (2020). DOI: 10.1002/cyto.a.24042
Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Anal. 27, 286–306 (1995). DOI: 10.1111/j.1538-4632.1995.tb00912.x
Buisseret, L. et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod. Pathol. 30, 1204–1212 (2017). DOI: 10.1038/modpathol.2017.43