Communication orale non publiée/Abstract (Colloques et congrès scientifiques)
Selection of Source Images Heavily Influences the Effectiveness of Adversarial Attacks
Ozbulak, Utku; Anzaku, Esla Timothy; De Neve, Wesley et al.
2021The 32nd British Machine Vision Conference (BMVC 2021)
Peer reviewed
 

Documents


Texte intégral
BMVC-2021.pdf
Postprint Auteur (2.04 MB)
Télécharger

Tous les documents dans ORBi sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
adversarial; adversarial attacks; adversarial examples; adversarial perturbation; adversarial transferability; adversarial vulnerability; model-to-model transferability; robustness; source images; image suitability; imagenet
Résumé :
[en] Although the adoption rate of deep neural networks (DNNs) has tremendously increased in recent years, a solution for their vulnerability against adversarial examples has not yet been found. As a result, substantial research efforts are dedicated to fix this weakness, with many studies typically using a subset of source images to generate adversarial examples, treating every image in this subset as equal. We demonstrate that, in fact, not every source image is equally suited for this kind of assessment. To do so, we devise a large-scale model-to-model transferability scenario for which we meticulously analyze the properties of adversarial examples, generated from every suitable source image in ImageNet by making use of three of the most frequently deployed attacks. In this transferability scenario, which involves seven distinct DNN models, including the recently proposed vision transformers, we reveal that it is possible to have a difference of up to $12.5%$ in model-to-model transferability success, $1.01$ in average $L_2$ perturbation, and $0.03$ ($8/225$) in average $L_{infty}$ perturbation when $1,000$ source images are sampled randomly among all suitable candidates. We then take one of the first steps in evaluating the robustness of images used to create adversarial examples, proposing a number of simple but effective methods to identify unsuitable source images, thus making it possible to mitigate extreme cases in experimentation and support high-quality benchmarking.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Ozbulak, Utku
Anzaku, Esla Timothy
De Neve, Wesley
Van Messem, Arnout  ;  Université de Liège - ULiège > Département de mathématique > Statistique appliquée aux sciences
Langue du document :
Anglais
Titre :
Selection of Source Images Heavily Influences the Effectiveness of Adversarial Attacks
Date de publication/diffusion :
22 novembre 2021
Nom de la manifestation :
The 32nd British Machine Vision Conference (BMVC 2021)
Date de la manifestation :
November 22-25, 2021
Manifestation à portée :
International
Peer review/Comité de sélection :
Peer reviewed
Disponible sur ORBi :
depuis le 12 mai 2022

Statistiques


Nombre de vues
65 (dont 0 ULiège)
Nombre de téléchargements
49 (dont 0 ULiège)

Bibliographie


Publications similaires



Contacter ORBi