MALT1; NF-kappaB; paracaspase; protein kinase C; signal transduction; B-Cell CLL-Lymphoma 10 Protein; BCL10 protein, human; CARD Signaling Adaptor Proteins; Intracellular Signaling Peptides and Proteins; NF-kappa B; Protein Isoforms; Recombinant Proteins; Tifab protein, human; Protein Kinase C; MALT1 protein, human; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein; Amino Acid Sequence; Animals; B-Cell CLL-Lymphoma 10 Protein/genetics; B-Cell CLL-Lymphoma 10 Protein/metabolism; Binding Sites; CARD Signaling Adaptor Proteins/classification; CARD Signaling Adaptor Proteins/genetics; CARD Signaling Adaptor Proteins/metabolism; Gene Expression Regulation; HEK293 Cells; Humans; Intracellular Signaling Peptides and Proteins/genetics; Intracellular Signaling Peptides and Proteins/metabolism; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics; Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism; NF-kappa B/genetics; NF-kappa B/metabolism; Phosphorylation; Phylogeny; Plasmids/chemistry; Plasmids/metabolism; Protein Binding; Protein Interaction Domains and Motifs; Protein Isoforms/classification; Protein Isoforms/genetics; Protein Isoforms/metabolism; Protein Kinase C/classification; Protein Kinase C/genetics; Protein Kinase C/metabolism; Recombinant Proteins/genetics; Recombinant Proteins/metabolism; Sequence Alignment; Sequence Homology, Amino Acid; Signal Transduction; Transfection; Cell Biology; Molecular Biology; Biochemistry
Abstract :
[en] Signal transduction typically displays a so-called bow-tie topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes. One such signaling node for several inflammatory and oncogenic signaling pathways is the CARD-CC/BCL10/MALT1 (CBM) complexes, which get activated by protein kinase C (PKC)-mediated phosphorylation of the caspase activation and recruitment domain (CARD)-coiled-coil domain (CC) component. In humans, there are four CARD-CC family proteins (CARD9, CARD10, CARD11, and CARD14) and 9 true PKC isozymes (α to ι). At this moment, less than a handful of PKC::CARD-CC relationships are known. In order to explore the biologically relevant combinatorial space out of all 36 potential permutations in this two-component signaling event, we made use of CARD10-deficient human embryonic kidney 293T cells for subsequent pairwise cotransfections of all CARD-CC family members and all activated PKCs. Upon analysis of NF-κB-dependent reporter gene expression, we could define specific PKC::CARD-CC relationships. Surprisingly, as many as 21 PKC::CARD-CC functional combinations were identified. CARD10 was responsive to most PKCs, while CARD14 was mainly activated by PKCδ. The CARD11 activation profile was most similar to that of CARD9. We also discovered the existence of mixed protein complexes between different CARD-CC proteins, which was shown to influence their PKC response profile. Finally, multiple PKCs were found to use a common phosphorylation site to activate CARD9, while additional phosphorylation sites contribute to CARD14 activation. Together, these data reveal the combinatorial space of PKC::CARD-CC signal transduction nodes, which will be valuable for future studies on the regulation of CBM signaling.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Staal, Jens ; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Driege, Yasmine; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Haegman, Mira; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Kreike, Marja; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Iliaki, Styliani; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Vanneste, Domien ; Université de Liège - ULiège > Département des sciences fonctionnelles (DSF) ; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Lork, Marie; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Afonina, Inna S; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Braun, Harald; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Beyaert, Rudi ; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium ; Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium
Language :
English
Title :
Defining the combinatorial space of PKC::CARD-CC signal transduction nodes.
Friedlander T, Mayo AE, Tlusty T & Alon U (2015) Evolution of bow-tie architectures in biology. PLOS Comput Biol 11, e1004055.
Supper J, Spangenberg L, Planatscher H, Dräger A, Schröder A & Zell A (2009) BowTieBuilder: modeling signal transduction pathways. BMC Syst Biol 3, 67.
Aminian G, Farahnak-Ghazani M, Mirmohseni M, Nasiri-Kenari M & Fekri F (2015) On the capacity of point-to-point and multiple-access molecular communications with ligand-receptors. IEEE Trans Mol Biol Multi-Scale Commun 1, 331–346.
Tieri P, Grignolio A, Zaikin A, Mishto M, Remondini D, Castellani GC & Franceschi C (2010) Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theor Biol Med Model 7, 32.
Iglesias PA (2016) The use of rate distortion theory to evaluate biological signaling pathways. IEEE Trans Mol Biol Multi-Scale Commun 2, 31–39.
Fang Y, Noel A, Yang N, Eckford AW & Kennedy RA (2017) Convex optimization of distributed cooperative detection in multi-receiver molecular communication. IEEE Trans Mol Biol Multi-Scale Commun 3, 166–182.
Hathcock D, Sheehy J, Weisenberger C, Ilker E & Hinczewski M (2016) Noise filtering and prediction in biological signaling networks. IEEE Trans Mol Biol Multi-Scale Commun 2, 16–30.
Hulpiau P, Driege Y, Staal J & Beyaert R (2016) MALT1 is not alone after all: identification of novel paracaspases. Cell Mol Life Sci 73, 1103–1116.
Minina EA, Staal J, Alvarez VE, Berges JA, Berman-Frank I, Beyaert R, Bidle KD, Bornancin F, Casanova M & Cazzulo JJ (2020) Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell 77, 927–929.
Staal J, Driege Y, Haegman M, Borghi A, Hulpiau P, Lievens L, Gul IS, Sundararaman S, Gonçalves A, Dhondt I et al. (2018) Ancient origin of the CARD–Coiled Coil/Bcl10/MALT1-Like paracaspase signaling complex indicates unknown critical functions. Front Immunol 9, 1136.
Juilland M & Thome M (2018) Holding all the CARDs: how MALT1 controls CARMA/CARD-dependent signaling. Front Immunol 9, 1927.
Yu OM & Brown JH (2015) G protein-coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation, differentiation, and cell proliferation. Mol Pharmacol 88, 171–180.
Sun L, Deng L, Ea C-K, Xia Z-P & Chen ZJ (2004) The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14, 289–301.
Afonina IS, Elton L, Carpentier I & Beyaert R (2015) MALT1–a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS J 282, 3286–3297.
Demeyer A, Staal J & Beyaert R (2016) Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol Med 22, 135–150.
Juilland M & Thome M (2016) Role of the CARMA1/BCL10/MALT1 complex in lymphoid malignancies. Curr Opin Hematol 23, 402–409.
Jabara HH, Ohsumi T, Chou J, Massaad MJ, Benson H, Megarbane A, Chouery E, Mikhael R, Gorka O, Gewies A et al. (2013) A Homozygous mucosa-associated lymphoid tissue 1 (MALT1) mutation in a family with 2 combined immunodeficiency. J Allergy Clin Immunol 132, 151–158.
McKinnon ML, Rozmus J, Fung S-Y, Hirschfeld AF, Del Bel KL, Thomas L, Marr N, Martin SD, Marwaha AK, Priatel JJ et al. (2014) Combined immunodeficiency associated with homozygous MALT1 mutations. J Allergy Clin Immunol 133, 1458–1462.e7.
Gewies A, Gorka O, Bergmann H, Pechloff K, Petermann F, Jeltsch KM, Rudelius M, Kriegsmann M, Weichert W, Horsch M et al. (2014) Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Rep 9, 1292–1305.
Bornancin F, Renner F, Touil R, Sic H, Kolb Y, Touil-Allaoui I, Rush JS, Smith PA, Bigaud M, Junker-Walker U et al. (2015) Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J Immunol 194, 3723–3734.
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL & Turvey SE (2018) The CBM-opathies-A rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front Immunol 9, 2078.
Demeyer A, Skordos I, Driege Y, Kreike M, Hochepied T, Baens M, Staal J & Beyaert R (2019) MALT1 proteolytic activity suppresses autoimmunity in a T cell intrinsic manner. Front Immunol 10, 1898.
Demeyer A, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Muyllaert D, Staal J & Beyaert R (2019) MALT1-deficient mice develop atopic-like dermatitis upon aging. Front Immunol 10, 2330.
Jaworski M, Marsland BJ, Gehrig J, Held W, Favre S, Luther SA, Perroud M, Golshayan D, Gaide O & Thome M (2014) Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J 33, 2765–2781.
Cheng L, Deng N, Yang N, Zhao X & Lin X (2019) Malt1 protease is critical in maintaining function of regulatory T cells and may be a therapeutic target for antitumor immunity. J Immunol 202, 3008–3019.
Flynn SM, Chen C, Artan M, Barratt S, Crisp A, Nelson GM, Peak-Chew S-Y, Begum F, Skehel M & de Bono M (2020) MALT-1 mediates IL-17 neural signaling to regulate C. elegans behavior, immunity and longevity. Nat Commun 11, 1–15.
Bonsignore L, Passelli K, Pelzer C, Perroud M, Konrad A, Thurau M, Stürzl M, Dai L, Trillo-Tinoco J, Del Valle L et al. (2017) A role for MALT1 activity in Kaposi’s sarcoma-associated herpes virus latency and growth of primary effusion lymphoma. Leukemia 31, 614–624.
Bardet M, Seeholzer T, Unterreiner A, Woods S, Krappmann D & Bornancin F (2018) MALT1 activation by TRAF6 needs neither BCL10 nor CARD11. Biochem Biophys Res Commun 506, 48–52.
Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S et al. (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28, 1248–1250.
Tabula Muris Consortium, Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367.
Wu C, Jin X, Tsueng G, Afrasiabi C & Su AI (2016) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44, D313–D316.
Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I & Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656.
Stepensky P, Keller B, Buchta M, Kienzler A-K, Elpeleg O, Somech R, Cohen S, Shachar I, Miosge LA, Schlesier M et al. (2013) Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects. J Allergy Clin Immunol 131, 477–485.e1.
Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A et al. (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459, 717–721.
Brohl AS, Stinson JR, Su HC, Badgett T, Jennings CD, Sukumar G, Sindiri S, Wang W, Kardava L, Moir S et al. (2015) Germline CARD11 mutation in a patient with severe congenital B cell lymphocytosis. J Clin Immunol 35, 32–46.
Jordan CT, Cao L, Roberson EDO, Pierson KC, Yang C-F, Joyce CE, Ryan C, Duan S, Helms CA, Liu Y et al. (2012) PSORS2 is due to mutations in CARD14. Am J Hum Genet 90, 784–795.
Fuchs-Telem D, Sarig O, van Steensel MAM, Isakov O, Israeli S, Nousbeck J, Richard K, Winnepenninckx V, Vernooij M, Shomron N et al. (2012) Familial pityriasis rubra pilaris is caused by mutations in CARD14. Am J Hum Genet 91, 163–170.
Peled A, Sarig O, Sun G, Samuelov L, Ma CA, Zhang Y, Dimaggio T, Nelson CG, Stone KD, Freeman AF et al. (2019) Loss-of-function mutations in caspase recruitment domain-containing protein 14 (CARD14) are associated with a severe variant of atopic dermatitis. J Allergy Clin Immunol 143, 173–181.e10.
Yang D, Guo T, Yuan Z, Lei C, Ding S, Yang Y, Tan Z & Luo H (2020) Mutant CARD10 in a family with progressive immunodeficiency and autoimmunity. Cell Mol Immunol 17, 782–784.
Zhou T, Souzeau E, Sharma S, Siggs OM, Goldberg I, Healey PR, Graham S, Hewitt AW, Mackey DA, Casson RJ et al. (2016) Rare variants in optic disc area gene CARD10 enriched in primary open-angle glaucoma. Mol Genet Genomic Med 4, 624–633.
Nho K, Corneveaux JJ, Kim S, Lin H, Risacher SL, Shen L, Swaminathan S, Ramanan VK, Liu Y, Foroud T et al. (2013) Whole-exome sequencing and imaging genetics identify functional variants for rate of change in hippocampal volume in mild cognitive impairment. Mol Psychiatry 18, 781–787.
Grabiner BC, Blonska M, Lin P-C, You Y, Wang D, Sun J, Darnay BG, Dong C & Lin X (2007) CARMA3 deficiency abrogates G protein-coupled receptor-induced NF-{kappa}B activation. Genes Dev 21, 984–996.
Qiao Q, Yang C, Zheng C, Fontán L, David L, Yu X, Bracken C, Rosen M, Melnick A, Egelman EH et al. (2013) Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51, 766–779.
David L, Li Y, Ma J, Garner E, Zhang X & Wu H (2018) Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome. Proc Natl Acad Sci USA 115, 1499–1504.
Schlauderer F, Seeholzer T, Desfosses A, Gehring T, Strauss M, Hopfner K-P, Gutsche I, Krappmann D & Lammens K (2018) Molecular architecture and regulation of BCL10-MALT1 filaments. Nat Commun 9, 4041.
Mellor H & Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332, 281–292.
Parker PJ & Murray-Rust J (2004) PKC at a glance. J Cell Sci 117, 131–132.
Nishikawa K, Toker A, Johannes F-J, Songyang Z & Cantley LC (1997) Determination of the specific substrate sequence motifs of protein kinase C isozymes. J Biol Chem 272, 952–960.
Kang J-H, Toita R, Kim CW & Katayama Y (2012) Protein kinase C (PKC) isozyme-specific substrates and their design. Biotechnol Adv 30, 1662–1672.
Newton AC (2018) Protein kinase C: perfectly balanced. Crit Rev Biochem Mol Biol 53, 208–230.
Heinisch JJ & Rodicio R (2018) Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 42.
Totoń E, Ignatowicz E, Skrzeczkowska K & Rybczyńska M (2011) Protein kinase Cε as a cancer marker and target for anticancer therapy. Pharmacol Rep PR 63, 19–29.
Mahanivong C, Chen HM, Yee SW, Pan ZK, Dong Z & Huang S (2008) Protein kinase Cα-CARMA3 signaling axis links Ras to NF-κB for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. Oncogene 27, 1273–1280.
Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U & Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257, 7847–7851.
Hauschild S, Tauber S, Lauber B, Thiel CS, Layer LE & Ullrich O (2014) T cell regulation in microgravity – The current knowledge from in vitro experiments conducted in space, parabolic flights and ground-based facilities. Acta Astronaut 104, 365–377.
Lim PS, Sutton CR & Rao S (2015) Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 146, 508–522.
Li Q, Mei Q, Huyan T, Xie L, Che S, Yang H, Zhang M & Huang Q (2013) Effects of simulated microgravity on primary human NK cells. Astrobiology 13, 703–714.
Matsumoto R, Wang D, Blonska M, Li H, Kobayashi M, Pappu B, Chen Y, Wang D & Lin X (2005) Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23, 575–585.
Thuille N, Wachowicz K, Hermann-Kleiter N, Kaminski S, Fresser F, Lutz-Nicoladoni C, Leitges M, Thome M, Massoumi R & Baier G (2013) PKCθ/β and CYLD are antagonistic partners in the NFκB and NFAT transactivation pathways in primary mouse CD3+ T lymphocytes. PLoS One 8, e53709.
Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H, Sakurai H & Kurosaki T (2005) PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med 202, 1423–1431.
Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-García ME, Ovechkina YL & Rawlings DJ (2005) Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity 23, 561–574.
Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R, Rojowska A, Hopfner K-P, Brombacher F, Urlaub H, Baier G et al. (2012) Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity 36, 32–42.
Atwood BK, Lopez J, Wager-Miller J, Mackie K & Straiker A (2011) Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genom 12, 14.
Chatila T, Silverman L,Miller R & Geha R (1989) Mechanisms of T cell activation by the calcium ionophore ionomycin. J Immunol 143, 1283–1289.
De Bruyne M, Hoste L, Bogaert DJ, Van den Bossche L, Tavernier SJ, Parthoens E, Migaud M, Konopnicki D, Yombi JC, Lambrecht BN et al. (2018) A CARD9 founder mutation disrupts NF-κB signaling by inhibiting BCL10 and MALT1 recruitment and signalosome formation. Front Immunol 9, 2366.
Lamason RL, McCully RR, Lew SM & Pomerantz JL (2010) Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry 49, 8240–8250.
Evenou J-P, Wagner J, Zenke G, Brinkmann V, Wagner K, Kovarik J, Welzenbach KA, Weitz-Schmidt G, Guntermann C, Towbin H et al. (2009) The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J Pharmacol Exp Ther 330, 792–801.
Holliday MJ, Witt A, Rodríguez Gama A, Walters BT, Arthur CP, Halfmann R, Rohou A, Dueber EC & Fairbrother WJ (2019) Structures of autoinhibited and polymerized forms of CARD9 reveal mechanisms of CARD9 and CARD11 activation. Nat Commun 10, 3070.
Lu Z, Liu D, Hornia A, Devonish W, Pagano M & Foster DA (1998) Activation of protein kinase C triggers its ubiquitination and degradation. Mol Cell Biol 18, 839–845.
Afonina IS, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J & Beyaert R (2016) The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep 17, 914–927.
Israël L, Bardet M, Huppertz A, Mercado N, Ginster S, Unterreiner A, Schlierf A, Goetschy JF, Zerwes H-G, Roth L et al. (2018) A CARD10-dependent tonic signalosome activates MALT1 paracaspase and regulates IL-17/TNF-α-driven keratinocyte inflammation. J Invest Dermatol 138, 2075–2079.
Schmitt A, Grondona P, Maier T, Brändle M, Schönfeld C, Jäger G, Kosnopfel C, Eberle FC, Schittek B, Schulze-Osthoff K et al. (2016) MALT1 protease activity controls the expression of inflammatory genes in keratinocytes upon zymosan stimulation. J Invest Dermatol 136, 788–797.
Moreno-García ME, Sommer K, Haftmann C, Sontheimer C, Andrews SF & Rawlings DJ (2009) Serine 649 phosphorylation within the protein kinase C-regulated domain down-regulates CARMA1 activity in lymphocytes. J Immunol 183, 7362–7370.
Flajnik MF (2014) Reevaluation of the Immunological Big Bang: comparisons of two vertebrate adaptive immune systems. Curr Biol 24, R1060–R1065.
Franchi N & Ballarin L (2017) Immunity in protochordates: the tunicate perspective. Front Immunol 8, 674.
Rosental B, Kowarsky M, Seita J, Corey DM, Ishizuka KJ, Palmeri KJ, Chen S-Y, Sinha R, Okamoto J, Mantalas G et al. (2018) Complex mammalian-like hematopoietic system found in a colonial chordate. Nature 564, 425–429.
Chen Z, Gong B-N, Wang Q, Xiao Z, Deng C, Wang W & Li Y (2019) Characterisation of amphioxus protein kinase C-δ/θ reveals a unique proto-V3 domain suggesting an evolutionary mechanism for PKC-θ unique V3. Fish Shellfish Immunol 84, 1100–1107.
Lee H-K, Yeo S, Kim J-S, Lee J-G, Bae Y-S, Lee C & Baek S-H (2010) Protein kinase C-eta and phospholipase D2 pathway regulates foam cell formation via regulator of G protein signaling 2. Mol Pharmacol 78, 478–485.
Capuani B, Pacifici F, Pastore D, Palmirotta R, Donadel G, Arriga R, Bellia A, Di Daniele N, Rogliani P, Abete P et al. (2016) The role of epsilon PKC in acute and chronic diseases: possible pharmacological implications of its modulators. Pharmacol Res 111, 659–667.
Gao H, Liu H, Tang T, Huang X, Wang D, Li Y, Huang P & Peng Y (2018) Oleanonic acid ameliorates pressure overload-induced cardiac hypertrophy in rats: the role of PKCζ-NF-κB pathway. Mol Cell Endocrinol 470, 259–268.
Islam SMA, Patel R & Acevedo-Duncan M (2018) Protein Kinase C-ζ stimulates colorectal cancer cell carcinogenesis via PKC-ζ/Rac1/Pak1/β-Catenin signaling cascade. Biochim Biophys Acta BBA - Mol Cell Res 1865, 650–664.
Staal J & Beyaert R (2018) Inflammation and NF-κB signaling in prostate cancer: mechanisms and clinical implications. Cells 7, 122.
Lork M, Staal J & Beyaert R (2019) Ubiquitination and phosphorylation of the CARD11-BCL10-MALT1 signalosome in T cells. Cell Immunol 340, 103877.
Loh JT, Xu S, Huo JX, Kim SS-Y, Wang Y & Lam K-P (2019) Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest 130, 2717–2729.
Eitelhuber AC, Warth S, Schimmack G, Düwel M, Hadian K, Demski K, Beisker W, Shinohara H, Kurosaki T, Heissmeyer V et al. (2011) Dephosphorylation of Carma1 by PP2A negatively regulates T-cell activation. EMBO J 30, 594–605.
Okonechnikov K, Golosova O, Fursov M & UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167.
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.
Guindon S, Delsuc F, Dufayard J-F & Gascuel O (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537, 113–137.
Braun H & Staal J. Stabilization of the TAK1 adaptor proteins TAB2 and TAB3 is critical for optimal NF-κB activation. FEBS J 287, 3161–3164.
Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SMJ, Amode R, Brent S et al. (2016) Ensembl comparative genomics resources. Database 2016, bav096.
Baens M, Bonsignore L, Somers R, Vanderheydt C, Weeks SD, Gunnarsson J, Nilsson E, Roth RG, Thome M & Marynen P (2014) MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes. PLoS One 9, e103774.
Tanghe G, Urwyler-Rösselet C, De Groote P, Dejardin E, De Bock P-J, Gevaert K, Vandenabeele P & Declercq W (2018) RIPK4 activity in keratinocytes is controlled by the SCFβ-TrCP ubiquitin ligase to maintain cortical actin organization. Cell Mol Life Sci 75, 2827–2841.
Staal J, Alci K, De Schamphelaire W, Vanhoucke M & Beyaert R (2019) Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site. Biotechniques 66, 254–259.
Wu EHT, Tam BHL & Wong YH (2006) Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 273, 2388–2398.
Schotte P, Denecker G, Van Den Broeke A, Vandenabeele P, Cornelis GR & Beyaert R (2004) Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 279, 25134–25142.
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA & Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8, 2281–2308.
Brinkman EK, Chen T, Amendola M & van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42, e168.
Kimura A, Israël A, Le Bail O & Kourilsky P (1986) Detailed analysis of the mouse H-2Kb promoter: enhancer-like sequences and their role in the regulation of class I gene expression. Cell 44, 261–272.
Ishida T, Mizushima S, Azuma S, Kobayashi N, Tojo T, Suzuki K, Aizawa S, Watanabe T, Mosialos G, Kieff E et al. (1996) Identification of TRAF6, a novel tumor necrosis factor receptor-associated factor protein that mediates signaling from an amino-terminal domain of the CD40 cytoplasmic region. J Biol Chem 271, 28745–28748.
Student (1908) The probable error of a mean. Biometrika 6, 1–25.
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.