A methodology for lithology-based thermal conductivities at a regional scale for shallow geothermal energy – Application to the Brussels-Capital Region
[en] A methodology for the determination of lithology-based thermal conductivities at a regional scale is proposed, assigning a saturated and unsaturated thermal conductivity to each stratigraphic unit encountered in the region. Such a methodology is paramount for GIS-supported mapping of shallow geothermal energy at a regional scale. The analysis is primarily based on the interpretation of thermal response tests (TRT), assuming that the thermal conductivity determined during TRT is a thickness-weighted average of the individual thermal conductivity of each stratigraphic unit constituting the ground along a ground heat exchanger (GHE). Enhanced thermal response tests, reference geological material-based thermal conductivities and laboratory optical scanning tests achieved on remolded specimen from drilling cuttings are used to validate the results. The relevance of the methodology is illustrated through its application to the Brussels-Capital Region (Belgium), and consistent saturated and unsaturated thermal conductivities are obtained for each stratigraphic unit. An uncertainty analysis on the thermal conductivity is proposed, and its impact on the design of GHE is discussed. In most cases, the relative error on the ground thermal conductivity is lower than 10 %, and its impact on GHE length remains limited.
Disciplines :
Civil engineering
Author, co-author :
Gerard, Pierre; Université Libre de Bruxelles (ULB) Building, Architecture and Town Planning (BATir) department, Belgium
Vincent, Mathilde; Université Libre de Bruxelles (ULB) Building, Architecture and Town Planning (BATir) department, Belgium
François, Bertrand ; Université de Liège - ULiège > Urban and Environmental Engineering ; Université Libre de Bruxelles (ULB) Building, Architecture and Town Planning (BATir) department, Belgium
Language :
English
Title :
A methodology for lithology-based thermal conductivities at a regional scale for shallow geothermal energy – Application to the Brussels-Capital Region
This work was supported by the European Regional Development Fund (EDRF) and the Brussels Capital Region in the frame of the project “Brugeo”. The authors would like also to thank their project partners, especially V. Gigot (ULB) for the support for the laboratory tests, M. Agniel and L. Gaudaré (Brussels Environment) for the fruitful discussions and their in-depth knowledge of the geological and hydrogeological models of BCR, E. Petitclerc (Geological Survey of Belgium) for cuttings collected during drilling and the access to their infrastructures for laboratory tests, G. Van Lysebetten (Belgian Building Research Institute) for the collection of TRT and ETRT outside BCR and M. Huysmans (VUB).This work was supported by the European Regional Development Fund (EDRF) and the Brussels Capital Region in the frame of the project ?Brugeo?. The authors would like also to thank their project partners, especially V. Gigot (ULB) for the support for the laboratory tests, M. Agniel and L. Gaudar? (Brussels Environment) for the fruitful discussions and their in-depth knowledge of the geological and hydrogeological models of BCR, E. Petitclerc (Geological Survey of Belgium) for cuttings collected during drilling and the access to their infrastructures for laboratory tests, G. Van Lysebetten (Belgian Building Research Institute) for the collection of TRT and ETRT outside BCR and M. Huysmans (VUB).
Agniel, M., Modélisation hydrogéologique en éléments finis du système phréatique bruxellois. Bruxelles-Environnement, 2020, 147 Available on https://environnement.brussels/thematiques/geologie-et-hydrogeologie/eaux-souterraines/modelisation/brussels-phreatic-system-model (consulted on 05/11/20).
Alberti, L., Angelotti, A., Antelmi, M., La Licata, I., A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers. Energies, 10(5), 2017, 703, 10.3390/en10050703.
Batini, N., Rotta Loira, A.F., Conti, P., Testi, D., Grassie, W., Laloui, L., Energy and geotechnical behaviour of energy piles for different design solutions. Applied Thermal Engineering 86 (2015), 199–213, 10.1016/j.applthermaleng.2015.04.050.
Becker, B.R., Misra, A., Fricke, B.A., Developments of Correlations for Soil Thermal Conductivity. International Communication in Heat and Mass Transfer 19:1 (1992), 59–68, 10.1016/0735-1933(92)90064-O.
Bell, J.P., McCulloch, J.S.C., Soil moisture estimation by the neutron method in Britain. Journal of Hydrology 7 (1969), 415–433, 10.1016/0022-1694(66)90083-7.
Bertermann, D., Klug, H., Morper-Busch, L., Bialas, C., Modelling vSGPs (very shallow geothermal potentials) in selected CSAs (case study areas). Energy 71 (2014), 226–244, 10.1016/j.energy.2014.04.054.
Bidarmaghz, A., Narsilio, G., Johnston, I., Numerical Modelling of Ground Heat Exchangers with Different Ground Loop Configurations for Direct Geothermal Applications. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2013, 3343–3346.
Buchanan, S., Triantafgrounilis, J., Mapping water table depth using geophysical and environmental variables. Groundwater 47 (2009), 80–96, 10.1111/j.1745-6584.2008.00490.x.
Buffel, P., Matthijs, J., Brussel-Nijvel, Geologische kaart van België, kaartblad 31-39, 1:50 000. Belgische Geologische Dienst en Afdeling Natuurlijke Rijkdommen en Energie, Brussel (Ministerie van de Vlaamse Gemeenschap), 2002.
Casasso, A., Sethi, R., G.POT: A quantitative method for the assessment and mapping of the shallow geothermal potential. Energy 106 (2016), 765–773, 10.1016/j.energy.2016.03.091.
Clauser, C., Huenges, E., Thermal conductivity of rocks and minerals. Rock Physics & Phase Relations: A Handbook of Physical Constants. American Geophysical Union 3 (1995), 105–126, 10.1029/RF003p0105.
Dalla Santa, G., Galgaro, A., Sassi, R., Cultrera, M., Scotton, P., Mueller, J., Bertermann, D., Mendrinos, D., Pasquali, R., Perego, R., Pera, S., Di Sipio, E., Cassiani, G., De Carli, M., Bernardi, A., An updated ground thermal properties database for GSHP applications. Geothermics, 85, 2020, 101758, 10.1016/j.geothermics.2019.101758.
Dam, J.P., Nuyens, J., Roisin, V., Thonnard, R., Carte géotechnique 31.3.7. Bruxelles - Notice explicative. Commission de cartographie géotechnique. 1984, Institut Géotechnique de l'Etat, Belgium, 55.
Delaleux, F., Py, X., Olives, R., Dominguez, A., Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Applied Thermal Engineering 33–34 (2012), 92–99, 10.1016/j.applthermaleng.2011.09.017.
Devleeschouwer, X., Goffin, C., Vandaele, J., Meyvis, B., Modélisation stratigraphique en 3D du sous-sol de la Région de Bruxelles-Capitale. 2017, Institut Royal des Sciences Naturelles de Belgique, 110 Available on https://environnement.brussels/thematiques/geologie-et-hydrogeologie/geologie (consulted on 05/11/20).
Di Donna, A., Barla, M., The role of ground conditions on energy tunnels’ heat exchange. Environmental Geotechnics 3 (2016), 214–224, 10.1680/jenge.15.00030.
Di Sipio, E., Galgaro, A., Destro, E., Teza, G., Chiesa, S., Giaretta, A., Manzella, A., Subsurface thermal conductivity assessment in Calabria (southern Italy): a regional case study. Environmental Earth Sciences 72 (2014), 1383–1401, 10.1007/s12665-014-3277-7.
Dong, Y., McCartney, J.S., Lu, N., Critical Review of Thermal Conductivity Models for Unsaturated Soils. Geotechnical and Geological Engineering 33 (2015), 207–221, 10.1007/s10706-015-9843-2.
Erol, S., François, B., Efficiency of various grouting materials for borehole heat exchangers. Applied Thermal Engineering 70:1 (2014), 788–799, 10.1016/j.applthermaleng.2014.05.034.
Farouki, O.T., Thermal properties of soils, United States Army Corps of Engineers. 1981, CRREL, Hannover, United States, 136.
Fasbender, D., Peeters, L., Bogaert, P., Dassargues, A., Bayesian data fusion applied to water table spatial mapping. Water Resources Research, 44, 2008, W12422, 10.1029/2008WR006921.
Fujii, H., Inatomi, T., Itoi, R., Uchida, Y., Development of suitability maps for ground-coupled heat pump systems using groundwater and heat transport models. Geothermics 36 (2007), 459–472, 10.1016/j.geothermics.2007.06.002.
García-Gil, A., Vazquez-Suñe, E., Alcaraz, M.M., Juan, A.S., Sanchez-Navarro, J.A., Montlleo, M., Rodriguez, G., Lao, J., GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account. Renewable Energy 77 (2015), 268–278, 10.1016/j.renene.2014.11.096.
Gehlin, S., Thermal response test – Method development and evaluation. PhD thesis, 2002, Lulea University of Technology, Sweden, 191.
Gemelli, A., Mancini, A., Longhi, S., GIS-based energy-economic model of low temperature geothermal resources: a case study in the Italian Marche region. Renewable Energy 36:9 (2011), 2474–2483, 10.1016/j.renene.2011.02.014.
Gerard, P., Kukral, J., François, B., Huysmans, M., Agniel, M., Van Lysebetten, G., Petitclerc, E., Assessment of thermal conductivity scanner for the determination of soils thermal conductivities for geothermal applications. European Geothermal Congress 2019. Conference Proceedings, Den Haag, The Netherlands, 2019.
Heske, C., Kohlsch, O., Dornstädter, J., Heidinger, P., Der Enhanced-Geothermal-Response Test als Auslegungsgrundlage und Optimierungstool. Geothermische Standorterkundung: Sonderheft Oberflächennahe Geothermie. Bbr Fachmagazin für Brunnen- und Leitungsbau 62 (2011), 36–43.
Johansen, O., Thermal conductivity of soils. PhD thesis, 1977, Norwegian University of Science and Technology, Norway, 231.
Kaufmann, O., Martin, T., 3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines. Computers & Geosciences 34 (2008), 278–290, 10.1016/j.cageo.2007.09.005.
Low, J., Thermal Conductivity of Soils for Energy Foundation Applications. PhD Thesis, 2015, University of Southampton, UK, 219.
Ondreka, J., Rüsgen, M.I., Stober, I., Czurda, K., GIS-supported mapping of shallow geothermal potential of representative areas in south-western Germany—possibilities and limitations. RenewableEnergy 32:13 (2007), 2186–2200, 10.1016/j.renene.2006.11.009.
Popov, Y.A., Pribnow, D.F.C., Sass, J.H., Williams, C.F., Burkhardt, H., Characterization of rock thermal conductivity by high-resolution optical scanning. Geothermics 28 (1999), 253–276, 10.1016/S0375-6505(99)00007-3.
Santilano, A., Donato, A., Galgaro, A., Montanari, D., Menghini, A., Viezzoli, A., Di Sipio, E., Destro, E., Manzella, A., An integrated 3D approach to assess the geothermal heat-exchange potential: The case study of western Sicily (southern Italy). Renewable Energy 97 (2016), 611–624, 10.1016/j.renene.2016.05.072.
Schön, J.H., Physical Properties of Rocks. Fundamentals and Principles of Petrophysics. Development in Petroleum Science, 65, 2015, Elsevier, Amsterdam, 497.
Van Lysebetten, G., Huybrechts, N., François, L., Geschiktheidskaarten Geothermie - Thermische Geleidbaarheid Ondergrond Vlaanderen. 2013, SmartGeotherm project, 47 Available on https://www.smartgeotherm.be/documenten/ (consulted on 05/11/20).
Vieira, A., Alberdi-Pagola, M., Christodoulides, P., Javed, S., Loveridge, F., Nguyen, F., Cecinato, F., Maranha, J., Florides, G., Prodan, I., Van Lysebetten, G., Ramalho, E., Salciarini, D., Georgiev, A., Rosin-Paumier, S., Popov, R., Lenart, S., Poulsen, S.E., Radioti, G., Characterisation of ground thermal and thermo-mechanical behavior for shallow geothermal energy applications. Energies, 10, 2017, 2044, 10.3390/en10122044.
Viesi, D., Galgaro, A., Visintainer, P., Crema, L., GIS-supported evaluation and mapping of the geo-exchange potential for vertical closed-loop systems in an Alpine valley, the case study of AdigeValley (Italy). Geothermics 71 (2018), 70–87, 10.1016/j.geothermics.2017.08.008.
Wilke, S., Menberg, K., Steger, H., Blum, P., Advanced thermal response tests: A review. Renewable and Sustainable Energy Reviews, 119, 2020, 109575, 10.1016/j.rser.2019.109575.
Wołoszyn, J., Gołas, A., Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method. Energy Conversion and Management 87 (2014), 1297–1304, 10.1016/j.enconman.2014.03.059.
SIA. Sondes géothermiques. SN 546 384. 2010, Société suisse des ingénieurs et des architectes, Zurich, 76.
Xie, J., Wang, G., Sha, Y., Liu, J., Wen, B., Nie, M., Zhang, S., GIS prospectivity mapping and 3D modeling validation for potential uranium deposit targets in Shangnan district. China. Journal of African Earth Sciences 128 (2017), 161–175, 10.1016/j.jafrearsci.2016.12.001.