Carbon; Air Movements; Climate Change; Forests; Fagus; Chemistry (all); Biochemistry, Genetics and Molecular Biology (all); Physics and Astronomy (all); General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry
Abstract :
[en] The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Dorado-Liñán, Isabel ; Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain. isabel.dorado@upm.es
Ayarzagüena, Blanca ; Dpto. Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
Babst, Flurin; School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85719, USA ; Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
Xu, Guobao ; Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA ; State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
Gil, Luis; Dpto. de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Madrid, Spain
Battipaglia, Giovanna ; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
Buras, Allan; Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany
Čada, Vojtěch ; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
Camarero, J Julio ; Pyrenean Institute of Ecology, (IPE-CSIC), Zaragoza, 50059, Spain
Cavin, Liam; Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
Claessens, Hugues ; Université de Liège - ULiège > Département GxABT > Gestion des ressources forestières et des milieux naturels
Drobyshev, Igor ; Forest Research Institute & Southern Swedish Forest Research Centre (SLU), Lomma, Sweden
Garamszegi, Balázs ; Environmental Meteorology, University of Freiburg, Freiburg, Germany
Grabner, Michael ; Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences, Vienna, Austria
Hacket-Pain, Andrew ; Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, L69 7ZT, United Kingdom
Hartl, Claudia ; Nature Rings - Environmental Research and Education, Mainz, Germany
Hevia, Andrea ; Department of Agroforestry Sciences, University of Huelva, Campus La Rábida, Palos de la Frontera, 21819, Huelva, Spain
Janda, Pavel; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
Jump, Alistair S; Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
Kazimirovic, Marko ; Faculty of Forestry, University of Belgrade, Belgrade, Serbia
Keren, Srdjan ; Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland
Kreyling, Juergen ; Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany
Land, Alexander ; Institute of Biology, University of Hohenheim, Stuttgart, Germany ; University of Applied Forest Sciences, Schadenweilerhof, Rottenburg am Neckar, Germany
Latte, Nicolas ; Université de Liège - ULiège > TERRA Research Centre > Gestion des ressources forestières et des milieux naturels
Levanič, Tom ; Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia ; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia
van der Maaten, Ernst ; Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
van der Maaten-Theunissen, Marieke ; Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
Martínez-Sancho, Elisabet ; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Menzel, Annette; TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Freising, Germany ; Institute for Advanced Study, Technical University of Munich, 85748, Garching, Germany
Mikoláš, Martin; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
Motta, Renzo; Dep. Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
Nola, Paola ; Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
Panayotov, Momchil; University of Forestry, Sofia, Bulgaria
Petritan, Any Mary ; National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
Petritan, Ion Catalin; Transilvania University of Brasov, Brasov, Romania
Popa, Ionel ; National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania ; Center for Mountain Economy - CE-MONT, Vatra Dornei, Romania
Prislan, Peter ; Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
Roibu, Catalin-Constantin ; Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Suceava, Romania
Rydval, Miloš ; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
Sánchez-Salguero, Raul ; Dpto. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
Scharnweber, Tobias ; Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany
Stajić, Branko ; Faculty of Forestry, University of Belgrade, Belgrade, Serbia
Svoboda, Miroslav ; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
Tegel, Willy ; Forest Growth and Dendroecology, University of Freiburg, Freiburg, Germany
Teodosiu, Marius ; Faculty of Letters, University of Bucharest, Bucharest, Romania
Toromani, Elvin; Faculty of Forestry Sciences, Agricultural University of Tirana, 1029, Kodër-Kamëz, Tirana, Albania
Trotsiuk, Volodymyr ; Faculty of Forestry and Wood Sciences, Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic ; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
Turcu, Daniel-Ond; National Institute for Research and Development in Forestry "Marin Drăcea", Voluntari, Romania
Weigel, Robert ; Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, Goettingen, 37077, Germany
Wilmking, Martin ; Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany
Zang, Christian ; Land Surface-Atmosphere Interactions, Technical University of Munich, Freising, Germany ; Department of Forestry, University of Applied Sciences Weihenstephan-Triesdorf, Freising, Germany
Zlatanov, Tzvetan ; Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
Trouet, Valerie ; Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
La Caixa Foundation NSF - National Science Foundation
Funding text :
This work was supported by Fundació La Caixa through the Junior Leader Program (LCF/BQ/LR18/11640004) and the Universidad Politécnica de Madrid through the Programa Propio (PINV-18-SBSYN2-105-F1TXYR). The following authors acknowledge funding support. I.D.L.: Agnese N. Haury Visiting Scholar & Trainee Fellowship (Laboratory of Tree-Ring Research, University of Arizona), the Mobility Award José Castillejo, Ministry of Education, Spanish Government (CAS19/00331) and the Programa de Ayudas Beatriz Galindo, Secretaria de Estado de Universidades, Investigación, Desarrollo e Innovación (#BG20/00065). V.T.: National Science Foundation CAREER grant (AGS-1349942). B.A.: Spanish Ministry of Science and Innovation through the JeDiS project (RTI-2018-096402-B-I00). F.B.: project “Inside out” (#POIR.04.04.00-00-5F85/18-00) funded by the HOMING program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. AB, AM, CSZ: Bavarian Ministry of Science and the Arts in the context of the Bavarian Climate Research Network (BayKliF). A.H.: PinCaR project (UHU-1266324) by ERD Funds, Andalusia Regional Government, Consejería de Economía, Conocimiento, Empresas y Universidad 2014-2020. EM-S: Swiss National Science Foundation project TRoxy (No. 200021_175888). A.S.J.: Natural Environment Research Council grants NE/V00929X/1 and NE/S010041/1. J.K., L.M., M.M.T., R.W., M.W.: research training group RESPONSE funded by the German Research Council (DFG Fi 846/8-1, DFG GRK2010). AMP: Romanian Ministry of Research, Innovation, and Digitization, Project-PN-19070506/Ctr. no. 12 N/2019. I.C.P.: grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI within PNCDI III (PN-III-P4-ID-PCE-2020-2696). R.S.S.: DendrOlavide I (EQC2018-005303-P), Ministry of Science, Innovation and Universities, Spain; DendrOlavide II (IE19_074 UPO), VURECLIM (P20_00813) and VULBOS (UPO-1263216). T.L.: Slovenian Research Agency—research core funding no. P4-0107 Program research group “Forest Biology, Ecology and Technology”. We thank Virgilio Gómez-Rubio for assistance and advice on the LMM development. We thank Christoph Dittmar, Wolfram Elling, and numerous students of the University of Applied Sciences Weihenstephan-Triesdorf for providing European beech tree-ring chronologies.This work was supported by Fundaci? La Caixa through the Junior Leader Program (LCF/BQ/LR18/11640004) and the Universidad Polit?cnica de Madrid through the Programa Propio (PINV-18-SBSYN2-105-F1TXYR). The following authors acknowledge funding support. I.D.L.: Agnese N. Haury Visiting Scholar & Trainee Fellowship (Laboratory of Tree-Ring Research, University of Arizona), the Mobility Award Jos? Castillejo, Ministry of Education, Spanish Government (CAS19/00331) and the Programa de Ayudas Beatriz Galindo, Secretaria de Estado de Universidades, Investigaci?n, Desarrollo e Innovaci?n (#BG20/00065). V.T.: National Science Foundation CAREER grant (AGS-1349942). B.A.: Spanish Ministry of Science and Innovation through the JeDiS project (RTI-2018-096402-B-I00). F.B.: project ?Inside out? (#POIR.04.04.00-00-5F85/18-00) funded by the HOMING program of the Foundation for Polish Science co-financed by the European Union under the European Regional Development Fund. AB, AM, CSZ: Bavarian Ministry of Science and the Arts in the context of the Bavarian Climate Research Network (BayKliF). A.H.: PinCaR project (UHU-1266324) by ERD Funds, Andalusia Regional Government, Consejer?a de Econom?a, Conocimiento, Empresas y Universidad 2014-2020. EM-S: Swiss National Science Foundation project TRoxy (No. 200021_175888). A.S.J.: Natural Environment Research Council grants NE/V00929X/1 and NE/S010041/1. J.K., L.M., M.M.T., R.W., M.W.: research training group RESPONSE funded by the German Research Council (DFG Fi 846/8-1, DFG GRK2010). AMP: Romanian Ministry of Research, Innovation, and Digitization, Project-PN-19070506/Ctr. no. 12?N/2019. I.C.P.: grant of the Romanian Ministry of Education and Research, CNCS-UEFISCDI within PNCDI III (PN-III-P4-ID-PCE-2020-2696). R.S.S.: DendrOlavide I (EQC2018-005303-P), Ministry of Science, Innovation and Universities, Spain; DendrOlavide II (IE19_074 UPO), VURECLIM (P20_00813) and VULBOS (UPO-1263216). T.L.: Slovenian Research Agency?research core funding no. P4-0107 Program research group ?Forest Biology, Ecology and Technology?. We thank Virgilio G?mez-Rubio for assistance and advice on the LMM development. We thank Christoph Dittmar, Wolfram Elling, and numerous students of the University of Applied Sciences Weihenstephan-Triesdorf for providing European beech tree-ring chronologies.
Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 136, 856–868 (2010). DOI: 10.1002/qj.625
Coumou, D., Capua, D. I., Vavrus, G., Wang, L. S. & Wang, S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 9, 2959 (2018). DOI: 10.1038/s41467-018-05256-8
Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 21, 1–23 (2017). DOI: 10.1175/EI-D-16-0023.1
Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 9, 180 (2018). DOI: 10.1038/s41467-017-02699-3
Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015). DOI: 10.1038/srep17491
Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 39, 1–6 (2012).
Röthlisberger, M., Pfahl, S. & Martius, O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 43, 10,910–989,997 (2016). DOI: 10.1002/2016GL070944
Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 45, 6311–6320 (2018).
Dong, B., Sutton, R. T., Woollings, T. & Hodges, K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 8, 34037 (2013). DOI: 10.1088/1748-9326/8/3/034037
Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 45242 (2017). DOI: 10.1038/srep45242
Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012). DOI: 10.1038/nclimate1452
Schumacher, D. L. et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 12, 712–717 (2019). DOI: 10.1038/s41561-019-0431-6
Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018). DOI: 10.1038/s41558-018-0156-3
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011). DOI: 10.1126/science.1204531
Buras, A., Rammig, A. & Zang, C. S. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020). DOI: 10.5194/bg-17-1655-2020
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013). DOI: 10.1038/nature12350
Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015). DOI: 10.1111/gcb.12916
Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017). DOI: 10.1016/j.wace.2017.10.003
Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science 332, 220–224 (2011). DOI: 10.1126/science.1201224
Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005). DOI: 10.1038/nature03972
Bastos, A., Gouveia, C. M., Trigo, R. M. & Running, S. W. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11, 3421–3435 (2014). DOI: 10.5194/bg-11-3421-2014
Fischer, E. M., Seneviratne, S. I., Vidale, P. L., Lüthi, D. & Schär, C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 20, 5081–5099 (2007). DOI: 10.1175/JCLI4288.1
Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020). DOI: 10.1038/s41467-020-16970-7
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). DOI: 10.1126/science.1201609
Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020). DOI: 10.5194/essd-12-3269-2020
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996). DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Rammig, A. et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences 12, 373–385 (2015). DOI: 10.5194/bg-12-373-2015
Spinoni, J., Naumann, G., Vogt, J. V. & Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 3, 509–524 (2015). DOI: 10.1016/j.ejrh.2015.01.001
Madonna, E., Li, C., Grams, C. M. & Woollings, T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 143, 2960–2972 (2017). DOI: 10.1002/qj.3155
Grams, C. M., Beerli, R., Pfenninger, S., Staffell, I. & Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change 7, 557–562 (2017). DOI: 10.1038/nclimate3338
Seftigen, K., Frank, D. C., Björklund, J., Babst, F. & Poulter, B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 27, 1352–1365 (2018). DOI: 10.1111/geb.12802
Babst, F. et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 201, 1289–1303 (2014). DOI: 10.1111/nph.12589
Zweifel, R. & Sterck, F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change 1, 9 (2018). DOI: 10.3389/ffgc.2018.00009
Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 221, 652–668 (2019). DOI: 10.1111/nph.15451
Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 24, 504–516 (2018). DOI: 10.1111/gcb.13920
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013). DOI: 10.1111/j.2041-210x.2012.00261.x
Davini, P. & Cagnazzo, C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 43, 1497–1511 (2014). DOI: 10.1007/s00382-013-1970-y
Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett. 39 (2012).
Drouard, M. & Woollings, T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 45, 12,040–12,048 (2018). DOI: 10.1029/2018GL079894
Bastos, A. et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 7, 10315 (2016). DOI: 10.1038/ncomms10315
Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 1–9 (2017). DOI: 10.1038/s41467-017-02348-9
Sousa, P. M. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 48, 1141–1160 (2017). DOI: 10.1007/s00382-016-3132-5
Hacket-Pain, A. J., Cavin, L., Friend, A. D. & Jump, A. S. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 135, 897–909 (2016). DOI: 10.1007/s10342-016-0982-7
Cavin, L. & Jump, A. S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 23, 362–379 (2017). DOI: 10.1111/gcb.13366
Leuschner, C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 47, 125576 (2020). DOI: 10.1016/j.ppees.2020.125576
Muffler, L. et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 47, 1910–1921 (2020). DOI: 10.1111/jbi.13884
Wang, F. et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees 35, 53–67 (2021). DOI: 10.1007/s00468-020-02011-9
Hall, R. J., Jones, J. M., Hanna, E., Scaife, A. A. & Erdélyi, R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 48, 3869–3887 (2017). DOI: 10.1007/s00382-016-3307-0
Screen, J. A. & Simmonds, I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change 4, 704–709 (2014). DOI: 10.1038/nclimate2271
Kornhuber, K. et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 14, 54002 (2019). DOI: 10.1088/1748-9326/ab13bf
Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014). DOI: 10.1038/ngeo2253
Peings, Y., Cattiaux, J., Vavrus, S. J. & Magnusdottir, G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 13, 74016 (2018). DOI: 10.1088/1748-9326/aacc79
Matsueda, M. & Endo, H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 44, 5158–5166 (2017). DOI: 10.1002/2017GL073336
Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018). DOI: 10.1007/s00382-018-4078-6
Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 10, 20–29 (2020). DOI: 10.1038/s41558-019-0662-y
de Vries, H., Woollings, T., Anstey, J., Haarsma, R. J. & Hazeleger, W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 41, 2643–2654 (2013). DOI: 10.1007/s00382-013-1699-7
Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 4, 287–300 (2018). DOI: 10.1007/s40641-018-0108-z
Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015). DOI: 10.1126/science.aab1833
Sousa-Silva, R. et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 24, 4304–4315 (2018). DOI: 10.1111/gcb.14326
Magri, D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450–463 (2008). DOI: 10.1111/j.1365-2699.2007.01803.x
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 23, 1675–1690 (2017). DOI: 10.1111/gcb.13535
Dorado-Liñán, I. et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 25, 1296–1314 (2019). DOI: 10.1111/gcb.14544
DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020). DOI: 10.1038/s41467-020-14300-5
Hacket-Pain, A. J., Friend, A. D., Lageard, J. G. A. & Thomas, P. A. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 35, 319–330 (2015). DOI: 10.1093/treephys/tpv007
Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 63, 625–644 (2006). DOI: 10.1051/forest:2006042
Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018). DOI: 10.1111/ele.13158
Popkin, G. How much can forests fight climate change? Nature 565, 280–282 (2019). DOI: 10.1038/d41586-019-00122-z
Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 29, 8823–8840 (2016). DOI: 10.1175/JCLI-D-16-0242.1
Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 29, 851–862 (2009). DOI: 10.1002/joc.1750
Doblas-Reyes, F. J., Casado, M. J. & Pastor, M. A. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 107, D2 (2002). DOI: 10.1029/2000JD000290
Cook, E. R. & Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 41, 45–53 (1981).
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015). DOI: 10.5194/bg-12-653-2015
Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).
Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008). DOI: 10.1016/j.dendro.2008.01.002
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/