Attractive interactions; Electron bound state; Electron channel; Electron pairing; Experimental platform; Interacting fermions; One-dimensional waveguides; Quantum physics; Electronic, Optical and Magnetic Materials; Condensed Matter Physics
Abstract :
[en] Understanding and controlling the transport properties of interacting fermions is a key forefront in quantum physics across a variety of experimental platforms. Motivated by recent experiments in one-dimensional (1D) electron channels written on the LaAlO3/SrTiO3 interface, we analyze how the presence of different forms of spin-orbit coupling (SOC) can enhance electron pairing in 1D waveguides. We first show how the intrinsic Rashba SOC felt by electrons at interfaces such as LaAlO3/SrTiO3 can be reduced when they are confined in one dimension. Then, we discuss how SOC can be engineered, and show using a mean-field Hartree-Fock-Bogoliubov model that SOC can generate and enhance spin-singlet and -triplet electron pairing. Our results are consistent with two recent sets of experiments [Briggeman, Nat. Phys. 17, 782787 (2021)10.1038/s41567-021-01217-z; Sci. Adv. 6, eaba6337 (2020)10.1126/sciadv.aba6337] that are believed to engineer the forms of SOC investigated in this work, which suggests that metal-oxide heterostructures constitute attractive platforms to control the collective spin of electron bound states. However, our findings could also be applied to other experimental platforms involving spinful fermions with attractive interactions, such as cold atoms.
Disciplines :
Physics
Author, co-author :
Damanet, François ; Université de Liège - ULiège > Complex and Entangled Systems from Atoms to Materials (CESAM) ; Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom ; Pittsburgh Quantum Institute, Pittsburgh, United States
Mansfield, Elliott; Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom ; Pittsburgh Quantum Institute, Pittsburgh, United States
Briggeman, Megan; Pittsburgh Quantum Institute, Pittsburgh, United States ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
Irvin, Patrick; Pittsburgh Quantum Institute, Pittsburgh, United States ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
Levy, Jeremy ; Pittsburgh Quantum Institute, Pittsburgh, United States ; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
Daley, Andrew J. ; Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom ; Pittsburgh Quantum Institute, Pittsburgh, United States
Language :
English
Title :
Spin-orbit-assisted electron pairing in one-dimensional waveguides
EPSRC - Engineering and Physical Sciences Research Council AFOSR - Air Force Office of Scientific Research NSF - National Science Foundation F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
F.D., E.M., and A.J.D. acknowledge Johannes Kombe for helpful discussions. Work at the University of Strathclyde was supported by the EPSRC Programme Grant DesOEQ (Grant No. EP/P009565/1), and by AFOSR Grant No. FA9550-18-1-0064. J.L. acknowledges support from a Vannevar Bush Faculty Fellowship (ONR Grant No. N00014-15-1-2847), and the National Science Foundation (Grant No. PHY-1913034). F.D. acknowledges the Belgian F.R.S.-FNRS for financial support.
T. Giamarchi, Quantum Physics in One Dimension, Vol. 121 (Oxford University Press, Oxford, 2003).
A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004) NATUAS 0028-0836 10.1038/nature02308.
Y.-Y. Pai, A. Tylan-Tyler, P. Irvin, and J. Levy, Rep. Prog. Phys. 81, 036503 (2018) RPPHAG 0034-4885 10.1088/1361-6633/aa892d.
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007) SCIEAS 0036-8075 10.1126/science.1146006.
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006) SCIEAS 0036-8075 10.1126/science.1131091.
A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010) PRLTAO 0031-9007 10.1103/PhysRevLett.104.126803.
M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010) PRLTAO 0031-9007 10.1103/PhysRevLett.104.126802.
A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. Maan, W. van der Wiel, A. Rijnders, D. Blank, and J. Hilgenkamp, Nat. Mater. 6, 493 (2007) 1476-1122 10.1038/nmat1931.
G. Cheng, M. Tomczyk, A. B. Tacla, H. Lee, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, C.-B. Eom, A. Daley, D. Pekker, and J. Levy, Phys. Rev. X 6, 041042 (2016) 2160-3308 10.1103/PhysRevX.6.041042.
C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nat. Mater. 7, 298 (2008) 1476-1122 10.1038/nmat2136.
A. Annadi, G. Cheng, H. Lee, J.-W. Lee, S. Lu, A. Tylan-Tyler, M. Briggeman, M. Tomczyk, M. Huang, D. Pekker, C.-B. Eom, P. Irvin, and J. Levy, Nano Lett. 18, 4473 (2018) NALEFD 1530-6984 10.1021/acs.nanolett.8b01614.
M. Briggeman, M. Tomczyk, B. Tian, H. Lee, J.-W. Lee, Y. He, A. Tylan-Tyler, M. Huang, C.-B. Eom, D. Pekker, R. S. K. Mong, P. Irvin, and J. Levy, Science 367, 769 (2020) SCIEAS 0036-8075 10.1126/science.aat6467.
F. Bi, M. Huang, C.-W. Bark, S. Ryu, S. Lee, C.-B. Eom, P. Irvin, and J. Levy, J. Appl. Phys. 119, 025309 (2016) JAPIAU 0021-8979 10.1063/1.4940045.
K. A. Brown, S. He, D. J. Eichelsdoerfer, M. Huang, I. Levy, H. Lee, S. Ryu, P. Irvin, J. Mendez-Arroyo, C.-B. Eom, C. A. Mirkin, and J. Levy, Nat. Commun. 7, 10681 (2016) 2041-1723 10.1038/ncomms10681.
J. I. Cirac and P. Zoller, Nat. Phys. 8, 264 (2012) 1745-2473 10.1038/nphys2275.
B. Lanyon, J. Whitfield, G. Gillett, M. Goggin, M. Almeida, I. Kassal, J. Biamonte, M. Mohseni, B. Powell, M. Barbieri, A. Aspuru-Guzik, and A. White, Nat. Chem. 2, 106 (2010) 1755-4330 10.1038/nchem.483.
I. Bloch, J. Dalibard, and S. Nascimbène, Nat. Phys. 8, 267 (2012) 1745-2473 10.1038/nphys2259.
T. Grujic, S. R. Clark, D. Jaksch, and D. G. Angelakis, New J. Phys. 14, 103025 (2012) NJOPFM 1367-2630 10.1088/1367-2630/14/10/103025.
R. Blatt and C. F. Roos, Nat. Phys. 8, 277 (2012) 1745-2473 10.1038/nphys2252.
A. A. Houck, H. E. Türeci, and J. Koch, Nat. Phys. 8, 292 (2012) 1745-2473 10.1038/nphys2251.
A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020) 1745-2473 10.1038/s41567-019-0733-z.
M. Briggeman, J. Li, M. Huang, H. Lee, J.-W. Lee, K. Eom, C.-B. Eom, P. Irvin, and J. Levy, Sci. Adv. 6, eaba6337 (2020) 2375-2548 10.1126/sciadv.aba6337.
M. Briggeman, H. Lee, J.-W. Lee, K. Eom, F. Damanet, E. Mansfield, J. Li, M. Huang, A. J. Daley, C.-B. Eom, P. Irvin, and J. Levy, Nat. Phys. 17, 782 (2021) 10.1038/s41567-021-01217-z.
A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, Nat. Mater. 14, 871 (2015) 1476-1122 10.1038/nmat4360.
M. Lebrat, P. Grišins, D. Husmann, S. Häusler, L. Corman, T. Giamarchi, J.-P. Brantut, and T. Esslinger, Phys. Rev. X 8, 011053 (2018) 2160-3308 10.1103/PhysRevX.8.011053.
S. Krinner, T. Esslinger, and J.-P. Brantut, J. Phys.: Condens. Matter 29, 343003 (2017) JCOMEL 0953-8984 10.1088/1361-648X/aa74a1.
J. Dalibard, Enrico Fermi 191, 1 (2014) 10.3254/978-1-61499-694-1-1.
arXiv:1504.05520.
N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep. Prog. Phys. 77, 126401 (2014) RPPHAG 0034-4885 10.1088/0034-4885/77/12/126401.
B. Farias, J. Melo, and C. Furtado, Eur. Phys. J. D 68, 77 (2014) EPJDF6 1434-6060 10.1140/epjd/e2014-50051-5.
B.-Z. Wang, Y.-H. Lu, W. Sun, S. Chen, Y. Deng, and X.-J. Liu, Phys. Rev. A 97, 011605 (R) (2018) 2469-9926 10.1103/PhysRevA.97.011605.
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.095302.
X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev. Lett. 102, 046402 (2009) PRLTAO 0031-9007 10.1103/PhysRevLett.102.046402.
P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012) PRLTAO 0031-9007 10.1103/PhysRevLett.109.095301.
L. Dell'Anna, G. Mazzarella, and L. Salasnich, Phys. Rev. A 84, 033633 (2011) PLRAAN 1050-2947 10.1103/PhysRevA.84.033633.
L. Dell'Anna, G. Mazzarella, and L. Salasnich, Phys. Rev. A 86, 053632 (2012) PLRAAN 1050-2947 10.1103/PhysRevA.86.053632.
Z. Zhong, A. Tóth, and K. Held, Phys. Rev. B 87, 161102 (R) (2013) PRBMDO 1098-0121 10.1103/PhysRevB.87.161102.
Y. Kim, R. M. Lutchyn, and C. Nayak, Phys. Rev. B 87, 245121 (2013) PRBMDO 1098-0121 10.1103/PhysRevB.87.245121.
Note that (Equation presented) is independent of the effective masses: Their values are only important to evaluate the spin-orbit coupling between bands far from the (Equation presented) point.
R. Bistritzer, G. Khalsa, and A. H. MacDonald, Phys. Rev. B 83, 115114 (2011) PRBMDO 1098-0121 10.1103/PhysRevB.83.115114.
A. Joshua, S. Pecker, J. Ruhman, E. Altman, and S. Ilani, Nat. Commun. 3, 1129 (2012) 2041-1723 10.1038/ncomms2116.
S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419 (1996) PRLTAO 0031-9007 10.1103/PhysRevLett.77.3419.
L. Petersen and P. Hedegård, Surf. Sci. 459, 49 (2000) SUSCAS 0039-6028 10.1016/S0039-6028(00)00441-6.
E. I. Rashba, Phys. Rev. B 86, 125319 (2012) PRBMDO 1098-0121 10.1103/PhysRevB.86.125319.
C. Beenakker and H. van Houten, in Semiconductor Heterostructures and Nanostructures, Solid State Physics Vol. 44, edited by H. Ehrenreich and D. Turnbull (Academic Press, Cambridge, 1991), pp. 1-228.
R. Landauer, IBM J. Res. Dev. 1, 223 (1957) IBMJAE 0018-8646 10.1147/rd.13.0223.
G. Cheng, M. Tomczyk, S. Lu, J. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.-B. Eom, C. Hellberg, and J. Levy, Nature (London) 521, 196 (2015) NATUAS 0028-0836 10.1038/nature14398.
Y. V. Pershin, J. A. Nesteroff, and V. Privman, Phys. Rev. B 69, 121306 (R) (2004) PRBMDO 1098-0121 10.1103/PhysRevB.69.121306.
G. Shavit and Y. Oreg, SciPost Phys. 9, 051 (2020) 2542-4653 10.21468/SciPostPhys.9.4.051.
M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 2004).
P. G. De Gennes, Superconductivity of Metals and Alloys, 1st ed. (CRC Press, Boca Raton, 2018).
V. J. Emery and S. A. Kivelson, Nature (London) 374, 434 (1995) NATUAS 0028-0836 10.1038/374434a0.
G. Singh, A. Jouan, L. Benfatto, F. Couëdo, P. Kumar, A. Dogra, R. C. Budhani, S. Caprara, M. Grilli, E. Lesne, A. Barthélémy, M. Bibes, C. Feuillet-Palma, J. Lesueur, and N. Bergeal, Nat. Commun. 9, 407 (2018) 10.1038/s41467-018-02907-8.
D. L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995) PRBMDO 0163-1829 10.1103/PhysRevB.52.R5539.
T.-C. Wei, D. Pekker, A. Rogachev, A. Bezryadin, and P. M. Goldbart, Europhys. Lett. 75, 943 (2006) EULEEJ 0295-5075 10.1209/epl/i2006-10218-2.
M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991) RMPHAT 0034-6861 10.1103/RevModPhys.63.239.
M. Alidoust and K. Halterman, J. Phys.: Condens. Matter 27, 235301 (2015) JCOMEL 0953-8984 10.1088/0953-8984/27/23/235301.
M. Alidoust and K. Halterman, New J. Phys. 17, 033001 (2015) NJOPFM 1367-2630 10.1088/1367-2630/17/3/033001.
M. Alidoust, Phys. Rev. B 101, 155123 (2020) 2469-9950 10.1103/PhysRevB.101.155123.
M. Alidoust, K. Halterman, and O. T. Valls, Phys. Rev. B 92, 014508 (2015) PRBMDO 1098-0121 10.1103/PhysRevB.92.014508.
M. Alidoust and K. Halterman, Phys. Rev. B 97, 064517 (2018) 2469-9950 10.1103/PhysRevB.97.064517.
Z. Wang, X. Wang, and C. Kallin, Phys. Rev. B 101, 064507 (2020) 2469-9950 10.1103/PhysRevB.101.064507.
C. M. Puetter and H.-Y. Kee, Europhys. Lett. 98, 27010 (2012) EULEEJ 0295-5075 10.1209/0295-5075/98/27010.
H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev. Lett. 97, 017006 (2006) PRLTAO 0031-9007 10.1103/PhysRevLett.97.017006.
Y. Gindikin and V. A. Sablikov, Phys. Rev. B 98, 115137 (2018) 2469-9950 10.1103/PhysRevB.98.115137.
M. Mahmoodian and A. Chaplik, JETP Lett. 107, 564 (2018) JTPLA2 0021-3640 10.1134/S0021364018090084.
M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012) SSTEET 0268-1242 10.1088/0268-1242/27/12/124003.
M. Mazziotti, N. Scopigno, M. Grilli, and S. Caprara, Condensed Matter 3, 37 (2018) 2410-3896 10.3390/condmat3040037.
F. Damanet, E. Mascarenhas, D. Pekker, and A. J. Daley, New J. Phys. 21, 115001 (2019) NJOPFM 1367-2630 10.1088/1367-2630/ab4f5d.
F. Damanet, E. Mascarenhas, D. Pekker, and A. J. Daley, Phys. Rev. Lett. 123, 180402 (2019) PRLTAO 0031-9007 10.1103/PhysRevLett.123.180402.
C. Laflamme, D. Yang, and P. Zoller, Phys. Rev. A 95, 043843 (2017) 2469-9926 10.1103/PhysRevA.95.043843.
S. Uchino, M. Ueda, and J.-P. Brantut, Phys. Rev. A 98, 063619 (2018) 2469-9926 10.1103/PhysRevA.98.063619.
C. Muldoon, L. Brandt, J. Dong, D. Stuart, E. Brainis, M. Himsworth, and A. Kuhn, New J. Phys. 14, 073051 (2012) NJOPFM 1367-2630 10.1088/1367-2630/14/7/073051.
N. V. Morrow, S. K. Dutta, and G. Raithel, Phys. Rev. Lett. 88, 093003 (2002) PRLTAO 0031-9007 10.1103/PhysRevLett.88.093003.