Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults.
[en] BACKGROUND: Aging is associated with a progressive decline in skeletal muscle mass and strength as well as an increase in adiposity. These changes may have devastating impact on the quality of life of older adults. Mitochondrial dysfunctions have been implicated in aging-related and obesity-related deterioration of muscle function. Impairments in mitochondrial quality control processes (biogenesis, fusion, fission, and mitophagy) may underlie this accumulation of mitochondrial dysfunction. High-intensity interval training (HIIT) was shown to improve muscle and mitochondrial function in healthy young and old adults and to improve body composition in obese older adults. Recent studies also positioned citrulline (CIT) supplementation as a promising intervention to counter obesity-related and aging-related muscle dysfunction. In the present study, our objectives were to assess whether HIIT, alone or with CIT, improves muscle function, functional capacities, adipose tissue gene expression, and mitochondrial quality control processes in obese older adults.
METHODS: Eighty-one-old and obese participants underwent a 12 week HIIT with or without CIT on an elliptical trainer [HIIT-CIT: 20 men/25 women, 67.2 ± 5.0 years; HIIT-placebo (PLA): 18 men/18 women, 68.1 ± 4.1 years]. Handgrip and quadriceps strength, lower limb muscle power, body composition, waist circumference, and functional capacities were assessed pre and post intervention. Vastus lateralis muscle biopsies were performed in a subset of participants to quantify markers of mitochondrial content (TOM20 and OXPHOS subunits), biogenesis (TFAM), fusion (MFN1&2, OPA1), fission (DRP1), and mitophagy (Parkin). Subcutaneous abdominal adipose tissue biopsies were also performed to assess the expression of genes involved in lipid metabolism.
RESULTS: HIIT-PLA and HIIT-CIT displayed improvements in functional capacities (P < 0.05), total (mean ± SD: HIIT-PLA: +1.27 ± 3.19%, HIIT-CIT: +1.05 ± 2.91%, P < 0.05) and leg lean mass (HIIT-PLA: +1.62 ± 3.85%, HIIT-CIT: +1.28 ± 4.82%, P < 0.05), waist circumference (HIIT-PLA: -2.2 ± 2.9 cm, HIIT-CIT: -2.6 ± 2.5 cm, P < 0.05), and muscle power (HIIT-PLA: +15.81 ± 18.02%, HIIT-CIT: +14.62 ± 20.02%, P < 0.05). Only HIIT-CIT decreased fat mass (-1.04 ± 2.42%, P < 0.05) and increased handgrip and quadriceps strength (+4.28 ± 9.36% and +10.32 ± 14.38%, respectively, P < 0.05). Both groups increased markers of muscle mitochondrial content, mitochondrial fusion, and mitophagy (P < 0.05). Only HIIT-CIT decreased the expression of the lipid droplet-associated protein CIDEA (P < 0.001).
CONCLUSIONS: High-intensity interval training is effective in improving functional capacities, lean mass, muscle power, and waist circumference in obese older adults. HIIT also increases markers of mitochondrial biogenesis, mitochondrial fusion, and mitophagy. Importantly, adding CIT to HIIT results in a greater increase in muscle strength and a significant decrease in fat mass. The present study therefore positions HIIT combined with CIT as an effective intervention to improve the health status of obese older adults.
Disciplines :
Geriatrics
Author, co-author :
Marcangeli, Vincent; Département des sciences biologiques, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada
Youssef, Layale; INSERM U1124, Université de Paris, Paris, France
Dulac, Maude; Département des sciences biologiques, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada
Carvalho, Livia P; École de Réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada ; Centre de Recherche sur le Vieillissement du Centre intégré universitaire de santé et services sociaux de l'Estrie-CHUS, Sherbrooke, Québec, Canada
Hajj-Boutros, Guy; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada ; Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
Reynaud, Olivier; Département des sciences biologiques, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada
Guegan, Bénédicte; INSERM U1124, Université de Paris, Paris, France
Buckinx, Fanny ; Université de Liège - ULiège > Unité de recherche Santé publique, épidémiologie et économie de la santé (URSAPES) ; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
Gaudreau, Pierrette; Département de Médecine de l'Université de Montréal, Centre de Recherche du Centre Hospitalier Universitaire de Montréal (CRCHUM), Université de Montréal, Montréal, Québec, Canada
Morais, José A; Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
Mauriège, Pascale; Département de kinésiologie, Université Laval, Québec, Québec, Canada
Noirez, Philippe; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; INSERM U1124, Université de Paris, Paris, France ; UFR STAPS, Université de Reims Champagne Ardenne, Reims, France
Aubertin-Leheudre, Mylène; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
Gouspillou, Gilles ; Département des sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Québec, Canada ; Groupe de recherche en Activité Physique Adaptée, Montréal, Québec, Canada ; Department of Medicine, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada ; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
Impact of high-intensity interval training with or without l-citrulline on physical performance, skeletal muscle, and adipose tissue in obese older adults.
This work was funded by grants from the Quebec Research Network on Aging of the Fonds de Recherche en Santé du Québec (FRQS) awarded to M.A.L., G.G., P.G., J.M., and P.N. and a Canadian Institutes of Health Research (CIHR) grant awarded to G.G., M.A.L., P.G., and J.M. G.G. is supported by a Chercheur Boursier Junior 2 salary award from the FRQS. M.A.L. is supported by a Chercheur Boursier Senior salary award from the FRQS.
Anker SD, Morley JE, von Haehling S. Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 2016;7:512–514.
Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002;50:889–896.
Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R. Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 2004;159:413–421.
Batsis JA, Villareal DT. Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nat Rev Endocrinol 2018;14:513–537.
Alexandre TDS, Scholes S, Santos JLF, de Oliveira C. Dynapenic abdominal obesity as a risk factor for worse trajectories of ADL disability among older adults: the ELSA cohort study. J Gerontol A Biol Sci Med Sci 2019;74:1112–1118.
Trouwborst I, Verreijen A, Memelink R, Massanet P, Boirie Y, Weijs P, et al. Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients 2018;10:605.
Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci 2021;22:8179.
Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obes Rev 2021;22:e13164. https://doi.org/10.1111/obr.13164
Leduc-Gaudet JP, Reynaud O, Hussain SN, Gouspillou G. Parkin overexpression protects from ageing-related loss of muscle mass and strength. J Physiol 2019;597:1975–1991.
Oliveira AN, Richards BJ, Slavin M, Hood DA. Exercise is muscle mitochondrial medicine. Exerc Sport Sci Rev 2021;49:67–76.
Harvey JA, Chastin SF, Skelton DA. Prevalence of sedentary behavior in older adults: a systematic review. Int J Environ Res Public Health 2013;10:6645–6661.
McPhee JS, French DP, Jackson D, Nazroo J, Pendleton N, Degens H. Physical activity in older age: perspectives for healthy ageing and frailty. Biogerontology 2016;17:567–580.
Fex A, Leduc-Gaudet JP, Filion ME, Karelis AD, Aubertin-Leheudre M. Effect of elliptical high intensity interval training on metabolic risk factor in pre- and type 2 diabetes patients: a pilot study. J Phys Act Health 2015;12:942–946.
Karlsen T, Aamot IL, Haykowsky M, Rognmo O. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis 2017;60:67–77.
Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 2014;39:409–412.
Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011;300:R1303–R1310.
Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab 2017;25:581–592.
Papadia C, Osowska S, Cynober L, Forbes A. Citrulline in health and disease. Rev Human Stud Clin Nutr 2018;37:1823–1828.
Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 2006;17:571–588.
Moinard C, Le Plenier S, Noirez P, Morio B, Bonnefont-Rousselot D, Kharchi C, et al. Citrulline supplementation induces changes in body composition and limits age-related metabolic changes in healthy male rats. J Nutr 2015;145:1429–1437.
Joffin N, Jaubert AM, Durant S, Bastin J, De Bandt JP, Cynober L, et al. Citrulline induces fatty acid release selectively in visceral adipose tissue from old rats. Mol Nutr Food Res 2014;58:1765–1775.
Bouillanne O, Melchior JC, Faure C, Paul M, Canoui-Poitrine F, Boirie Y, et al. Impact of 3-week citrulline supplementation on postprandial protein metabolism in malnourished older patients: the Ciproage randomized controlled trial. Clin Nutr 2019;38:564–574.
Buckinx F, Gouspillou G, Carvalho LP, Marcangeli V, El Hajj Boutros G, Dulac M, et al. Effect of high-intensity interval training combined with l-citrulline supplementation on functional capacities and muscle function in dynapenic-obese older adults. J Clin Med 2018;7:561.
Figueroa A, Alvarez-Alvarado S, Ormsbee MJ, Madzima TA, Campbell JC, Wong A. Impact of l-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure. Exp Gerontol 2015;63:35–40.
Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J Sports Sci 2002;20:873–899.
Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–699.
Gouspillou G, Sgarioto N, Kapchinsky S, Purves-Smith F, Norris B, Pion CH, et al. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 2014;28:1621–1633.
Bastard JP, Cuevas J, Cohen S, Jardel C, Hainque B. Percutaneous adipose tissue biopsy by mini-liposuction for metabolic studies. JPEN J Parenter Enteral Nutri 1994;18:466–468.
Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 2008;105:7833–7838.
Sculthorpe NF, Herbert P, Grace F. One session of high-intensity interval training (HIIT) every 5 days, improves muscle power but not static balance in lifelong sedentary ageing men: a randomized controlled trial. Medicine 2017;96:e6040. https://doi.org/10.1097/MD.0000000000006040
Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from Shaping America's Health: Association for Weight Management and Obesity Prevention; NAASO, Obes Soc; the American Society for Nutrition; and the American Diabetes Association. The American Journal of Clinical Nutrition 2007;85:1197–1202.
Batacan RB Jr, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br J Sports Med 2017;51:494–503.
Turk Y, Theel W, Kasteleyn MJ, Franssen FME, Hiemstra PS, Rudolphus A, et al. High intensity training in obesity: a meta-analysis. Obes Sci Pract 2017;3:258–271.
Abreu-Vieira G, Fischer AW, Mattsson C, de Jong JM, Shabalina IG, Ryden M, et al. Cidea improves the metabolic profile through expansion of adipose tissue. Nat Commun 2015;6:7433.
Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, et al. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006;575:901–911.
Larsen S, Danielsen JH, Sondergard SD, Sogaard D, Vigelsoe A, Dybboe R, et al. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports 2015;25:e59–e69.
Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 2008;586:151–160.
Chrois KM, Dohlmann TL, Sogaard D, Hansen CV, Dela F, Helge JW, et al. Mitochondrial adaptations to high intensity interval training in older females and males. Eur J Sport Sci 2020;20:135–145.
von Haehling S, Coats AJS, Anker SD. Ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2021. J Cachexia Sarcopenia Muscle 2021;12:2259–2261.