Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages.
[en] Zinc (Zn) deficiency in human populations depending on cereals as a main source of Zn is a global malnutrition problem. In this field study, we investigated the potential of green manure application to increase soil Zn availability and wheat grain Zn concentrations (biofortification) on a Luvisol with different long-term fertilizer management. We also studied cadmium (Cd), as wheat is a major contributor of this undesired non-essential element to human diets. Clover (Trifolium alexandrinum L.), mustard (Sinapis alba L.) or no green manure was grown on field plots which had been managed with farmyard manure or mineral fertilizers for 65years in Switzerland. After green manure incorporation into the soil, spring wheat (Triticum aestivum L.) was grown on all plots. The "diffusive gradients in thin films" (DGT) method and DTPA extraction were used to compare soil Zn and Cd availability among the treatments. In contrast to mustard, clover increased soil mineral nitrogen concentrations and wheat biomass; however, neither increased grain Zn concentrations. DGT-available Zn and Cd increased temporarily after both farmyard manure and mineral nitrogen fertilizer application. Higher DTPA-extractable soil Zn and Cd, lower wheat grain yields, but higher grain Zn concentrations were obtained with farmyard manure compared to mineral fertilizers, independent of the green manure treatment. Farmyard manure added Zn, Cd and organic matter that increased the soil binding capacity for Zn and Cd. The decomposition of clover residues caused higher wheat grain yields, but only marginally lower grain Zn concentrations. The absence of a stronger dilution of grain Zn was probably due to organic acid and nitrogen release from decomposing clover, which facilitated Zn uptake by wheat. The study revealed that both long- and short-term field management with organic matter alters soil Zn and Cd concentrations but that the long-term effects dominate their uptake by wheat, in Zn sufficient soil.
Disciplines :
Agriculture & agronomy
Author, co-author :
Grüter, Roman ; Institute of Terrestrial Ecosystems (ITES), ETH Zurich, 8092 Zurich, Switzerland. Electronic address: roman.grueter@usys.ethz.ch
Costerousse, Benjamin ; Institute of Agricultural Sciences (IAS), ETH Zurich, 8315 Lindau, Switzerland. Electronic address: benjamin.costerousse@usys.ethz.ch
Bertoni, Angelina; Institute of Agricultural Sciences (IAS), ETH Zurich, 8315 Lindau, Switzerland. Electronic address: bertonia@student.ethz.ch
Mayer, Jochen; Institute for Sustainability Sciences (ISS), Agroscope, 8046 Zurich, Switzerland. Electronic address: jochen.mayer@agroscope.admin.ch
Thonar, Cécile ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland. Electronic address: cecile.thonar@fibl.org
Frossard, Emmanuel; Institute of Agricultural Sciences (IAS), ETH Zurich, 8315 Lindau, Switzerland. Electronic address: emmanuel.frossard@usys.ethz.ch
Schulin, Rainer; Institute of Terrestrial Ecosystems (ITES), ETH Zurich, 8092 Zurich, Switzerland. Electronic address: rainer.schulin@env.ethz.ch
Tandy, Susan ; Institute of Terrestrial Ecosystems (ITES), ETH Zurich, 8092 Zurich, Switzerland. Electronic address: susan.tandy@env.ethz.ch
Language :
English
Title :
Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages.
Aghili, F., Gamper, H.A., Eikenberg, J., Khoshgoftarmanesh, A.H., Afyuni, M., Schulin, R., Jansa, J., Frossard, E., Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS One, 9, 2014, 10.1371/journal.pone.0101487.
Alloway, B.J., Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31 (2009), 537–548, 10.1007/s10653-009-9255-4.
Altomare, C., Tringovska, I., Beneficial soil microorganisms, an ecological alternative for soil fertility management. Sustain. Agric. Rev. 7 (2011), 161–214, 10.1007/978-94-007-1521-9_6.
Bates, D., Maechler, M., Bolker, B., Walker, S., lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. URL http://CRAN.R-project.org/package=lme4, 2014.
Benke, M.B., Indraratne, S.R., Hao, X.Y., Chang, C., Goh, T.B., Trace element changes in soil after long-term cattle manure applications. J. Environ. Qual. 37 (2008), 798–807, 10.2134/jeq2007.0214.
Bertin, C., Yang, X.H., Weston, L.A., The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256 (2003), 67–83, 10.1023/A:1026290508166.
Black, R.E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., de Onis, M., Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., Uauy, R., Maternal and Child Nutrition Study Group. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382 (2013), 427–451, 10.1016/S0140-6736(13)60937-X.
Blume, H.-P., Brümmer, G.W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.-M., Scheffer/Schachtschabel Soil Science. 2016, Springer, Berlin Heidelberg.
Bolan, N.S., Adriano, D.C., Mahimairaja, S., Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 34 (2004), 291–338, 10.1080/10643380490434128.
Bouis, H.E., Saltzman, A., Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec. 12 (2017), 49–58, 10.1016/j.gfs.2017.01.009.
Cakmak, I., Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant Soil 302 (2008), 1–17, 10.1007/s11104-007-9466-3.
Cakmak, I., Gulut, K.Y., Marschner, H., Graham, R.D., Effect of zinc and iron-deficiency on Phytosiderophore release in wheat genotypes differing in zinc efficiency. J. Plant Nutr. 17 (1994), 1–17, 10.1080/01904169409364706.
Cakmak, I., Pfeiffer, W.H., McClafferty, B., Biofortification of durum wheat with zinc and iron. Cereal Chem. 87 (2010), 10–20, 10.1094/Cchem-87-1-0010.
Cavagnaro, T.R., The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304 (2008), 315–325, 10.1007/s11104-008-9559-7.
Chaudhary, M., Narwal, R.P., Effect of long-term application of farmyard manure on soil micronutrient status. Arch. Agron. Soil Sci. 51 (2005), 351–359, 10.1080/03650340500133134.
Cookson, W.R., Cornforth, I.S., Rowarth, J.S., Winter soil temperature (2–15 degrees C) effects on nitrogen transformations in clover green manure amended or unamended soils; a laboratory and field study. Soil Biol. Biochem. 34 (2002), 1401–1415, 10.1016/S0038-0717(02)00083-4.
Davison, W., Zhang, H., In-situ speciation measurements of trace components in natural-waters using thin-film gels. Nature 367 (1994), 546–548, 10.1038/367546a0.
Delcastilho, P., Chardon, W.J., Salomons, W., Influence of cattle-manure slurry application on the solubility of cadmium, copper, and zinc in a manured acidic, loamy-sand soil. J. Environ. Qual. 22 (1993), 689–697, 10.2134/jeq1993.00472425002200040009x.
Delogu, G., Cattivelli, L., Pecchioni, N., De Falcis, D., Maggiore, T., Stanca, A.M., Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur. J. Agron. 9 (1998), 11–20, 10.1016/S1161-0301(98)00019-7.
EDI, Verordnung des EDI über Fremd- und Inhaltsstoffe in Lebensmitteln (817.021.23). 1995, Eidgenössisches Departement des Innern, Bern.
EFSA, Cadmium dietary exposure in the European population. EFSA J., 10, 2012, 10.2903/j.efsa.2012.2551.
Erenoglu, E.B., Kutman, U.B., Ceylan, Y., Yildiz, B., Cakmak, I., Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat. New Phytol. 189 (2011), 438–448, 10.1111/j.1469-8137.2010.03488.x.
Evans, A., Influence of low-molecular-weight organic-acids on zinc distribution within micronutrient pools and zinc uptake by wheat. J. Plant Nutr. 14 (1991), 1307–1318, 10.1080/01904169109364287.
Fageria, N.K., Green manuring in crop production. J. Plant Nutr. 30 (2007), 691–719, 10.1080/01904160701289529.
FAL, RAC, FAW, Bestimmung der Trockensubstanz und des Wassergehaltes in Düngerproben. Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 2: Bodenuntersuchung zur Standortcharakterisierung. 1998.
FAL, RAC, FAW, Bestimmung des Aschegehaltes (Glührückstand) und des Glühverlustes. Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 4: Düngeruntersuchung. 1998.
FAL, RAC, FAW, pH-Wert in Wassersuspension (1:2.5) & pH-Wert in CaCl2-Suspension (1:2.5). Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 2: Bodenuntersuchung zur Standortcharakterisierung. 1999.
FAL, RAC, FAW, Bestimmung der Körnung im mineralischen Anteil der Feinerde. Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 2: Bodenuntersuchung zur Standortcharakterisierung. 2008.
FAL, RAC, FAW, Bestimmung von Kjeldahl-Stickstoff in Hof- und Recyclingdüngern. Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 4: Düngeruntersuchung. 2015.
FAL, RAC, FAW, Extraktion von Abfalldüngern mit Königswasser in geschlossenen Gefässen im Mikrowellenofen. Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten Band 4: Düngeruntersuchung. 2015.
Fan, M.S., Zhao, F.J., Fairweather-Tait, S.J., Poulton, P.R., Dunham, S.J., McGrath, S.P., Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22 (2008), 315–324, 10.1016/j.jtemb.2008.07.002.
FAO, FAO cereal supply and demand brief. Food and agriculture organization of the United Nations. URL http://www.fao.org/worldfoodsituation/csdb/en/, 2016 (Accessed 16.09.2016).
FAO/WHO, Codex Alimentarius: General Standard for Contaminants and Toxins in Food and Feed (CODEX STAN 193). 1995, Food and Agriculture Organization of the United Nations & World Health Organization, Rome.
Flisch, R., Sinaj, S., Charles, R., Richner, W., GRUDAF. Principles for fertilisation in arable and fodder production. Agrarforschung 16 (2009), 1–100.
Franchini, J.C., Gonzalez-Vila, F.J., Cabrera, F., Miyazawa, M., Pavan, M.A., Rapid transformations of plant water-soluble organic compounds in relation to cation mobilization in an acid Oxisol. Plant Soil 231 (2001), 55–63, 10.1023/A:1010338917775.
Gramlich, A., Tandy, S., Frossard, E., Eikenberg, J., Schulin, R., Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?. J. Agric. Food Chem. 61 (2013), 10409–10417, 10.1021/Jf401117d.
Grant, C.A., Bailey, L.D., Mclaughlin, M.J., Singh, B.R., Management factors which influence cadmium concentrations in crops. McLaughlin, M.J., Singh, B.R., (eds.) Cadmium in Soils and Plants, 1999, Springer, Dordrecht.
Habiby, H., Afyuni, M., Khoshgoftarmanesh, A.H., Schulin, R., Effect of preceding crops and their residues on availability of zinc in a calcareous Zn-deficient soil. Biol. Fertil. Soils 50 (2014), 1061–1067, 10.1007/s00374-014-0926-7.
Hamner, K., Kirchmann, H., Trace element concentrations in cereal grain of long-term field trials with organic fertilizer in Sweden. Nutr. Cycl. Agroecosyst. 103 (2015), 347–358, 10.1007/s10705-015-9749-7.
Harris, N.S., Taylor, G.J., Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol. 13 (2013), 1–16, 10.1186/1471-2229-13-103.
Hart, J.J., Welch, R.M., Norvell, W.A., Kochian, L.V., Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol. Plant. 116 (2002), 73–78, 10.1034/j.1399-3054.2002.1160109.x.
He, Q.B., Singh, B.R., Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. J. Soil Sci. 44 (1993), 641–650, 10.1111/j.1365-2389.1993.tb02329.x.
Hothorn, T., Bretz, F., Westfall, P., Simultaneous inference in general parametric models. Biom. J. 50 (2008), 346–363, 10.1002/bimj.200810425.
Hudson, B.D., Soil organic matter and available water capacity. J. Soil Water Conserv. 49 (1994), 189–194.
IUSS Working Group WRB, World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, 2014, FAO, Rome.
Janzen, H.H., Bole, J.B., Biederbeck, V.O., Slinkard, A.E., Fate of N applied as green manure or ammonium fertilizer to soil subsequently cropped with spring wheat at 3 sites in Western Canada. Can. J. Soil Sci. 70 (1990), 313–323, 10.4141/cjss90-032.
Jarrell, W.M., Beverly, R.B., The dilution effect in plant nutrition studies. Adv. Agron. 34 (1981), 197–224, 10.1016/S0065-2113(08)60887-1.
Jones, D., Willett, V., Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38 (2006), 991–999, 10.1016/j.soilbio.2005.08.012.
Jones, D.L., Organic acids in the rhizosphere - a critical review. Plant Soil 205 (1998), 25–44, 10.1023/A:1004356007312.
Jones, D.L., Dennis, P.G., Owen, A.G., van Hees, P.A.W., Organic acid behavior in soils - misconceptions and knowledge gaps. Plant Soil 248 (2003), 31–41, 10.1023/A:1022304332313.
Jones, D.L., Healey, J.R., Willett, V.B., Farrar, J.F., Hodge, A., Dissolved organic nitrogen uptake by plants - an important N uptake pathway?. Soil Biol. Biochem. 37 (2005), 413–423, 10.1016/j.soilbio.2004.08.008.
Jones, D.L., Owen, A.G., Farrar, J.F., Simple method to enable the high resolution determination of total free amino acids in soil solutions and soil extracts. Soil Biol. Biochem. 34 (2002), 1893–1902, 10.1016/S0038-0717(02)00203-1.
Jones, K.C., Johnston, A.E., Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted, UK. Environ. Pollut. 57 (1989), 199–216, 10.1016/0269-7491(89)90012-2.
Khan, M.A., Castro-Guerrero, N., Mendoza-Cozatl, D.G., Moving toward a precise nutrition: preferential loading of seeds with essential nutrients over non-essential toxic elements. Front. Plant Sci., 5, 2014, 10.3389/Fpls.2014.00051.
Khoshgoftarmanesh, A.H., Chaney, R.L., Preceding crop affects grain cadmium and zinc of wheat grown in saline soils of Central Iran. J. Environ. Qual. 36 (2007), 1132–1136, 10.2134/Jeq2006.0276.
Köleli, N., Eker, S., Cakmak, I., Effect of zinc fertilization on cadmium toxicity in durum and bread wheat grown in zinc-deficient soil. Environ. Pollut. 131 (2004), 453–459, 10.1016/j.envpol.2004.02.012.
Kutman, U.B., Yildiz, B., Cakmak, I., Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil 342 (2011), 149–164, 10.1007/s11104-010-0679-5.
Kutman, U.B., Yildiz, B., Ozturk, L., Cakmak, I., Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 87 (2010), 1–9, 10.1094/Cchem-87-1-0001.
Kuzyakov, Y., Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42 (2010), 1363–1371, 10.1016/j.soilbio.2010.04.003.
Lehmann, A., Veresoglou, S.D., Leifheit, E.F., Rillig, M.C., Arbuscular mycorrhizal influence on zinc nutrition in crop plants - a meta-analysis. Soil Biol. Biochem. 69 (2014), 123–131, 10.1016/j.soilbio.2013.11.001.
Levi-Minzi, R., Riffaldi, R., Saviozzi, A., Organic-matter and nutrients in fresh and mature farmyard manure. Agric. Wastes 16 (1986), 225–236, 10.1016/0141-4607(86)90068-5.
Li, B.Y., Zhou, D.M., Cang, L., Zhang, H.L., Fan, X.H., Qin, S.W., Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 96 (2007), 166–173, 10.1016/j.still.2007.05.005.
Lindsay, W.L., Norvell, W.A., Development of a Dtpa soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 (1978), 421–428, 10.2136/sssaj1978.03615995004200030009x.
Lipoth, S.L., Schoenau, J.J., Copper, zinc, and cadmium accumulation in two prairie soils and crops as influenced by repeated applications of manure. J. Plant Nutr. Soil Sci. 170 (2007), 378–386, 10.1002/jpln.200625007.
Lorenz, S.E., Hamon, R.E., Mcgrath, S.P., Holm, P.E., Christensen, T.H., Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur. J. Soil Sci. 45 (1994), 159–165, 10.1111/j.1365-2389.1994.tb00497.x.
Luo, L., Ma, Y.B., Zhang, S.Z., Wei, D.P., Zhu, Y.G., An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 90 (2009), 2524–2530, 10.1016/j.jenvman.2009.01.011.
Mäder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U., Soil fertility and biodiversity in organic farming. Science 296 (2002), 1694–1697, 10.1126/science.1071148.
McLaughlin, M.J., Singh, B.R., Cadmium in Soils and Plants. 1999, Springer, Dordrecht.
Mertens, J., Smolders, E., Zinc. Alloway, B.J., (eds.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 2013, Springer, Dordrecht.
Miranda, K.M., Espey, M.G., Wink, D.A., A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5 (2001), 62–71, 10.1006/niox.2000.0319.
Morgounov, A., Gomez-Becerra, H.F., Abugalieva, A., Dzhunusova, M., Yessimbekova, M., Muminjanov, H., Zelenskiy, Y., Ozturk, L., Cakmak, I., Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155 (2007), 193–203, 10.1007/s10681-006-9321-2.
Mori, S., Nishizawa, N., Methionine as a dominant precursor of phytosiderophores in Graminaceae plants. Plant Cell Physiol. 28 (1987), 1081–1092, 10.1093/oxfordjournals.pcp.a077388.
Muhammad, I., Puschenreiter, M., Wenzel, W.W., Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci. Total Environ. 416 (2012), 490–500, 10.1016/j.scitotenv.2011.11.029.
Mulvaney, R., Nitrogen-inorganic forms. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M., Johnston, C.T., Sumner, M.E., (eds.) Methods of Soil Analysis Part 3 Chemical Methods, 1996, Soil Science Society of America, Madison, WI.
Nicholson, F.A., Chambers, B.J., Williams, J.R., Unwin, R.J., Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour. Technol. 70 (1999), 23–31, 10.1016/S0960-8524(99)00017-6.
Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C., Chambers, B.J., An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 311 (2003), 205–219, 10.1016/S0048-9697(03)00139-6.
Nikoli, T., Matsi, T., Influence of liquid cattle manure on micronutrients content and uptake by corn and their availability in a calcareous soil. Agron. J. 103 (2011), 113–118, 10.2134/agronj2010.0273.
Nolan, A.L., Zhang, H., McLaughlin, M.J., Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. J. Environ. Qual. 34 (2005), 496–507, 10.2134/jeq2005.0496.
Oberholzer, H.R., Leifeld, J., Mayer, J., Changes in soil carbon and crop yield over 60 years in the Zurich organic fertilization experiment, following land-use change from grassland to cropland. J. Plant Nutr. Soil Sci. 177 (2014), 696–704, 10.1002/jpln.201300385.
Oburger, E., Gruber, B., Schindlegger, Y., Schenkeveld, W.D.C., Hann, S., Kraemer, S.M., Wenzel, W.W., Puschenreiter, M., Root exudation of phytosiderophores from soil-grown wheat. New Phytol. 203 (2014), 1161–1174, 10.1111/nph.12868.
Oliver, D.P., Schultz, J.E., Tiller, K.G., Merry, R.H., The effect of crop rotations and tillage practices on cadmium concentration in wheat-grain. Aust. J. Agric. Res. 44 (1993), 1221–1234, 10.1071/Ar9931221.
Olsen, L.I., Palmgren, M.G., Many rivers to cross: the journey of zinc from soil to seed. Front. Plant Sci., 5, 2014, 10.3389/Fpls.2014.00030.
Pearson, J.N., Rengel, Z., Distribution and remobilization of Zn and Mn during grain development in wheat. J. Exp. Bot. 45 (1994), 1829–1835, 10.1093/jxb/45.12.1829.
Peleg, Z., Saranga, Y., Yazici, A., Fahima, T., Ozturk, L., Cakmak, I., Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306 (2008), 57–67, 10.1007/s11104-007-9417-z.
Peoples, M.B., Herridge, D.F., Ladha, J.K., Biological nitrogen-fixation - an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174 (1995), 3–28, 10.1007/Bf00032239.
Perez, A.L., Anderson, K.A., DGT estimates cadmium accumulation in wheat and potato from phosphate fertilizer applications. Sci. Total Environ. 407 (2009), 5096–5103, 10.1016/j.scitotenv.2009.05.045.
Praveen-Kumar, Tripathi, K.P., Aggarwal, R.K., Influence of crops, crop residues and manure on amino acid and amino sugar fractions of organic nitrogen in soil. Biol. Fertil. Soils 35 (2002), 210–213, 10.1007/s00374-002-0451-y.
R Core Team, R: a Language and Environment for Statistical Computing. 2013, R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-project.org.
Richards, J.R., Zhang, H.L., Schroder, J.L., Hattey, J.A., Raun, W.R., Payton, M.E., Micronutrient availability as affected by the long-term application of phosphorus fertilizer and organic amendments. Soil Sci. Soc. Am. J. 75 (2011), 927–939, 10.2136/sssaj2010.0269.
Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M., Verbeke, T., Koller, M., Maechler, M., robustbase: Basic Robust Statistics. R package version 0.92-6. URL http://CRAN.R-project.org/package=robustbase, 2016.
Rudmann, C., Willer, H., Jahrbuch Biolandbau Schweiz. Zahlen, Fakten, Hintergründe. 2005, Research Institute of Organic Agriculture (FiBL), Frick.
Ryan, M.H., Angus, J.F., Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250 (2003), 225–239, 10.1023/A:1022839930134.
Shojima, S., Nishizawa, N.K., Fushiya, S., Nozoe, S., Irifune, T., Mori, S., Biosynthesis of phytosiderophores – in vitro biosynthesis of 2′-Deoxymugineic acid from L-methionine and nicotianamine. Plant Physiol. 93 (1990), 1497–1503, 10.1104/pp.93.4.1497.
Smolders, E., Mertens, J., Cadmium. Alloway, B.J., (eds.) Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 2013, Springer, Dordrecht.
Soltani, S., Khoshgoftarmanesh, A.H., Afyuni, M., Shrivani, M., Schulin, R., The effect of preceding crop on wheat grain zinc concentration and its relationship to total amino acids and dissolved organic carbon in rhizosphere soil solution. Biol. Fertil. Soils 50 (2014), 239–247, 10.1007/s00374-013-0851-1.
Stein, A.J., Global impacts of human mineral malnutrition. Plant Soil 335 (2010), 133–154, 10.1007/s11104-009-0228-2.
Stevenson, F.J., Nitrogen-organic forms. Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., (eds.) Methods of Soil Analysis Part 3—Chemical Methods, 1996, Soil Science Society of America, American Society of Agronomy, Madison, WI.
Tandy, S., Mundus, S., Yngvesson, J., de Bang, T.C., Lombi, E., Schjoerring, J.K., Husted, S., The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 346 (2011), 167–180, 10.1007/s11104-011-0806-y.
Tian, Y., Wang, X.R., Luo, J., Yu, H.X., Zhang, H., Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice. Environ. Sci. Technol. 42 (2008), 7649–7654, 10.1021/es7027789.
Tlustoš, P., Hejcman, M., Hůlka, M., Patáková, M., Kunzová, E., Száková, J., Mobility and plant availability of risk elements in soil after long-term application of farmyard manure. Environ. Sci. Pollut. Res., 2016, 1–12, 10.1007/s11356-016-7592-2.
Wang, F., Wang, Z.H., Kou, C.L., Ma, Z.H., Zhao, D., Responses of wheat yield, macro- and micro-nutrients, and heavy metals in soil and wheat following the application of manure compost on the North China plain. PLoS One, 11, 2016, 10.1371/journal.pone.0146453.
Welch, R.M., Graham, R.D., Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55 (2004), 353–364, 10.1093/Jxb/Erh064.
Wessells, K.R., Brown, K.H., Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One, 7, 2012, 10.1371/journal.pone.0050568.
Wiggenhauser, M., Bigalke, M., Imseng, M., Muller, M., Keller, A., Murphy, K., Kreissig, K., Rehkamper, M., Wilcke, W., Frossard, E., Cadmium isotope fractionation in soil-wheat systems. Environ. Sci. Technol. 50 (2016), 9223–9231, 10.1021/acs.est.6b01568.
Williams, P.N., Zhang, H., Davison, W., Zhao, S.Z., Lu, Y., Dong, F., Zhang, L., Pan, Q., Evaluation of in situ DGT measurements for predicting the concentration of Cd in Chinese field-cultivated Rice: impact of soil Cd:Zn ratios. Environ. Sci. Technol. 46 (2012), 8009–8016, 10.1021/es301195h.
Xue, Y.F., Yue, S.C., Zhang, Y.Q., Cui, Z.L., Chen, X.P., Yang, F.C., Cakmak, I., McGrath, S.P., Zhang, F.S., Zou, C.Q., Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant Soil 361 (2012), 153–163, 10.1007/s11104-012-1510-2.
Yao, Y., Sun, Q., Wang, C., Wang, P.-f., Ding, S.-m., Evaluation of organic amendment on the effect of cadmium bioavailability in contaminated soils using the DGT technique and traditional methods. Environ. Sci. Pollut. Res., 2015, 1–10, 10.1007/s11356-015-5218-8.
Zhang, F.S., Romheld, V., Marschner, H., Release of zinc mobilizing root exudates in different plant-species as affected by zinc nutritional-status. J. Plant Nutr. 14 (1991), 675–686, 10.1080/01904169109364234.
Zhang, H., Davison, W., Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability. Environ. Chem. 12 (2015), 85–101, 10.1071/EN14105.
Zhang, H., Lombi, E., Smolders, E., Mcgrath, S., Kinetics of Zn release in soils and prediction of Zn concentration in plants using diffusive gradients in thin. Environ. Sci. Technol. 38 (2004), 3608–3613, 10.1021/Es0352597.
Zhao, F.J., Su, Y.H., Dunham, S.J., Rakszegi, M., Bedo, Z., McGrath, S.P., Shewry, P.R., Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 49 (2009), 290–295, 10.1016/j.jcs.2008.11.007.
Zou, C.Q., Zhang, Y.Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R.Z., Ortiz-Monasterio, I., Simunji, S., Wang, Z.H., Sohu, V., Hassan, M., Kaya, Y., Onder, O., Lungu, O., Mujahid, M.Y., Joshi, A.K., Zelenskiy, Y., Zhang, F.S., Cakmak, I., Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361 (2012), 119–130, 10.1007/s11104-012-1369-2.