Article (Scientific journals)
Ultimate periodicity problem for linear numeration systems
Charlier, Emilie; Massuir, Adeline; Rigo, Michel et al.
2022In International Journal of Algebra and Computation, 32, p. 561-596
Peer Reviewed verified by ORBi
 

Files


Full Text
2007.08147.pdf
Author preprint (679.41 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
automata theory; Decision problem; linear recurrent sequence; numeration system; p-adic valuation; Mathematics (all); General Mathematics
Abstract :
[en] We address the following decision problem. Given a numeration system U and a U-recognizable subset X of N, i.e. the set of its greedy U-representations is recognized by a finite automaton, decide whether or not X is ultimately periodic. We prove that this problem is decidable for a large class of numeration systems built on linear recurrence sequences. Based on arithmetical considerations about the recurrence equation and on p-adic methods, the DFA given as input provides a bound on the admissible periods to test.
Disciplines :
Mathematics
Author, co-author :
Charlier, Emilie  ;  Université de Liège - ULiège > Mathematics
Massuir, Adeline ;  Université de Liège - ULiège > Mathematics
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique
Rowland, E.;  Department of Mathematics, Hofstra University, Hempstead, United States
Language :
English
Title :
Ultimate periodicity problem for linear numeration systems
Publication date :
2022
Journal title :
International Journal of Algebra and Computation
ISSN :
0218-1967
Publisher :
World Scientific
Volume :
32
Pages :
561-596
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 05 May 2022

Statistics


Number of views
61 (6 by ULiège)
Number of downloads
34 (0 by ULiège)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi