Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya.
Ndungu, Samuel Mathu; Messmer, Monika M; Ziegler, Dominiket al.
2018 • In Agriculture, Ecosystems and Environment, 261, p. 161-171
Agro-ecology; Bradyrhizobium distribution; Cowpea (Vigna unguiculata L. Walp); MALDI-TOF MS; Ecology; Animal Science and Zoology; Agronomy and Crop Science
Abstract :
[en] Cowpea (Vigna unguiculata L. Walp.) is an important African food legume suitable for dry regions. It is the main legume in two contrasting agro-ecological regions of Kenya as an important component of crop rotations because of its relative tolerance to unpredictable drought events. This study was carried out in an effort to establish a collection of bacterial root nodule symbionts and determine their relationship to physicochemical soil parameters as well as any geographical distributional patterns. Bradyrhizobium spp. were found to be widespread in this study and several different types could be identified at each site. Unique but rare symbionts were recovered from the nodules of plants sampled in a drier in-land region, where there were also overall more different bradyrhizobia found. Plants raised in soil from uncultivated sites with a natural vegetation cover tended to also associate with more different bradyrizobia. The occurrence and abundance of different bradyrhizobia correlated with differences in soil texture and pH, but did neither with the agro-ecological origin, nor the origin from cultivated (n = 15) or uncultivated (n = 5) sites. The analytical method, protein profiling of isolated strains by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), provided higher resolution than 16S rRNA gene sequencing and was applied in this study for the first time to isolates recovered directly from field-collected cowpea root nodules. The method thus seems suitable for screening isolate collections on the presence of different groups, which, provided an appropriate reference database, can also be assigned to known species.
Disciplines :
Agriculture & agronomy
Author, co-author :
Ndungu, Samuel Mathu; Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland ; International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya ; Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
Messmer, Monika M; Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
Gamper, Hannes A; Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
Mészáros, Éva; Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
Thuita, Moses; International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya
Vanlauwe, Bernard; International Institute of Tropical Agriculture (IITA), c/o ICIPE Campus, P.O. Box 30772-00100 Nairobi, Kenya
Frossard, Emmanuel; Institute of Agricultural Sciences, ETH Zurich Plant Nutrition group Eschikon 33, CH-8315 Lindau, Switzerland
Thonar, Cécile ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Plant Sciences ; Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, CH-5070 Frick, Switzerland
Language :
English
Title :
Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya.
The authors thank Silas Kiragu and Morris Dzuya for technical support during site selection and sampling and the farmers in both study areas for allowing us collecting root nodules and soil samples from their fields. The authors acknowledge support by the MEA Ltd. (Nakuru, Kenya) for a sample of Biofix inoculum from which the CBA reference strain had been isolated and Dr. Abidine Traore for cowpea nodules from which comparison strain BK1 was isolated. This project was supported by an ETH Zurich Engineering for Development (E4D) scholarship awarded by the Sawiris Foundation for Social Development. We are grateful to the Genetic Diversity Centre at ETH Zurich for lab support. Valuable input by three reviewers and the editor for improving this paper is also acknowledged.
Appunu, C., N'Zoue, A., Moulin, L., Depret, G., Laguerre, G., Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical–ecological–climatic regions of India are nodulated by Bradyrhizobium yuanmingense. Syst. Appl. Microbiol. 32 (2009), 460–470.
Azevedo, H., Lopes, F.M., Silla, P.R., Hungria, M., A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genom., 16, 2015, 1.
Baker, G.C., Smith, J.J., Cowan, D.A., Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55 (2003), 541–555.
Batista, L., Irisarri, P., Rebuffo, M., Jose Cuitino, M., Sanjuan, J., Monza, J., Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biol. Fertil. Soils 51 (2015), 11–20.
Bell, T., Tylianakis, J.M., Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems. Proc. R. Soc. B-Biol. Sci., 283, 2016 20160896.
Bouyoucos, G.J., Hydrometer method improved for making particle size analyses of soils. Agron. J. 54 (1962), 464–465.
Bremner, J., Determination of nitrogen in soil by the Kjeldahl method. J. agric. Sci. 55 (1960), 11–33.
Broughton, W.J., Dilworth, M.J., Plant nutrient solutions. Somasegaran, P., Hoben, H., (eds.) Handbook for Rhizobia: Methods in Legume-Rhizobium Technology, 1970, Niftal Project, University of Hawaii, Honolulu, 245–249.
Cao, Y., Wang, E.-T., Zhao, L., Chen, W.-M., Wei, G.-H., Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol. Biochem. 78 (2014), 128–137.
Delamuta, J.R., Ribeiro, R.A., Menna, P., Bangel, E.V., Hungria, M., Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz. J. Microbiol. 43 (2012), 698–710.
Delamuta, J.R., Ribeiro, R.A., Ormeno-Orrillo, E., Melo, I.S., Martínez-Romero, E., Hungria, M., Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int. J. Syst. Evol. Microbiol. 63 (2013), 3342–3351.
Delamuta, J.R.M., Ribeiro, R.A., Ormeño-Orrillo, E., Parma, M.M., Melo, I.S., Martínez-Romero, E., Hungria, M., Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov.: nitrogen-fixing symbionts of tropical forage legumes. Int. J. Syst. Evol. Microbiol. 65 (2015), 4424–4433.
Dice, L.R., Measures of the amount of ecologic association between species. Ecology 26 (1945), 297–302.
Ferreira, L., Sánchez-Juanes, F., García-Fraile, P., Rivas, R., Mateos, P.F., Martínez-Molina, E., González-Buitrago, J.M., Velázquez, E., MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One, 6, 2011, e20223.
Fossou, R.K., Ziegler, D., Zézé, A., Barja, F., Perret, X., Two major clades of bradyrhizobia dominate symbiotic interactions with pigeonpea in fields of Côte d'Ivoire. Front. Microbiol., 7, 2016.
Grönemeyer, J.L., Kulkarni, A., Berkelmann, D., Hurek, T., Reinhold-Hurek, B., Rhizobia indigenous to the Okavango region in Sub-Saharan Africa: diversity, adaptations, and host specificity. Appl. Environ. Microbiol. 80 (2014), 7244–7257.
Grönemeyer, J.L., Chimwamurombe, P., Reinhold-Hurek, B., Bradyrhizobium subterraneum sp. nov.: a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts. Int. J. Syst. Evol. Microbiol. 65 (2015), 3241–3247.
Grönemeyer, J.L., Hurek, T., Reinhold-Hurek, B., Bradyrhizobium kavangense sp. nov.: a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int. J. Syst. Evol. Microbiol. 65 (2015), 4886–4894.
Guimarães, A.A., Duque Jaramillo, P.M., Abrahao Nobrega, R.S., Florentino, L.A., Silva, K.B., de Souza Moreira, F.M., Genetic and symbiotic diversity of ditrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Appl. Environ. Microbiol. 78 (2012), 6726–6733.
Hammer, O., Harper, D.A.T., Ryan, P.D., PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4 (2001), 1–9.
Holland, S.M., Analytic Rarefaction 1.3. 2003, University of Georgia, Athens.
Ibáñez, F., Angelini, J., Taurian, T., Tonelli, M.L., Fabra, A., Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst. Appl. Microbiol. 32 (2009), 49–55.
Jaetzold, R., Schmidt, H., Hornetz, B., Shisanya, C., Ministry of Agriculture Farm Management Handbook of Kenya, Vol. II, 2006, Ministry of Agriculture, Nairobi, Kenya Part C Subpart C1.
Kimiti, J.M., Odee, D.W., Vanlauwe, B., Area under grain legumes cultivation and problems faced by smallholder farmers in legume production in the semi-arid eastern Kenya. JSDA 11 (2009), 305–315.
Koppell, J.H., Parker, M.A., Phylogenetic clustering of Bradyrhizobium symbionts on legumes indigenous to North America. Microbiology 158 (2012), 2050–2059.
Krasova-Wade, T., Ndoye, I., Braconnier, S., Sarr, B., de Lajudie, P., Neyra, M., Diversity of indigeneous bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata (L.) Walp.) grown under limited and favorable water conditions in Senegal (West Africa). Afr. J. Biotechnol. 2 (2003), 13–22.
Krasova-Wade, T., Diouf, O., Ndoye, I., Sall, C.E., Braconnier, S., Neyra, M., Water-condition effects on rhizobia competition for cowpea nodule occupancy. Afr. J. Biotechnol. 5 (2006), 1457–1463.
Lane, D., 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics. 1991, 125–175.
Law, I.J., Botha, W.F., Majaule, U.C., Phalane, F.L., Symbiotic and genomic diversity of ‘cowpea’ bradyrhizobia from soils in Botswana and South Africa. Biol. Fertil. Soils 43 (2007), 653–663.
Leite, J., Fischer, D., Rouws, L.F.M., Fernandes, P.I., Hofmann, A., Kublik, S., Schloter, M., Xavier, G.R., Radl, V., Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Front. Plant Sci., 7, 2017.
Lepš, J., Šmilauer, P., Multivariate Analysis of Ecological Data Using CANOCO. 2003, Cambridge University Press.
López-López, A., Negrete-Yankelevich, S., Rogel, M.A., Ormeño-Orrillo, E., Martinez, J., Martinez-Romero, E., Native bradyrhizobia from Los Tuxtlas in Mexico are symbionts of Phaseolus lunatus (Lima bean). Syst. Appl. Microbiol. 36 (2013), 33–38.
Lush, W., Evans, L., The domestication and improvement of cowpeas (Vigna unguiculata (L.) Walp.). Euphytica 30 (1981), 579–587.
Mathu, S., Herrmann, L., Pypers, P., Matiru, V., Mwirichia, R., Lesueur, D., Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. Walp.) and green gram (Vigna radiata L. Wilczek.) yields in Kenya. Soil Sci. Plant Nutr. 58 (2012), 750–763.
Menna, P., Pereira, A.A., Bangel, E.V., Hungria, M., Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48 (2009), 120–130.
Ohno, T., Zibilske, L.M., Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55 (1991), 892–895.
Ormeño-Orrillo, E., Vinuesa, P., Zuniga-Davila, D., Martínez-Romero, E., Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst. Appl. Microbiol. 29 (2006), 253–262.
Palmer, K.M., Young, J.P.W., Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl. Environ. Microbiol. 66 (2000), 2445–2450.
Pule-Meulenberg, F., Belane, A.K., Krasova-Wade, T., Dakora, F.D., Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol., 10, 2010, 89.
Pule-Meulenberg, F., Root-nodule Bacteria of Legumes Growing in Semi-arid African Soils and Other Areas of the World. Bacterial Diversity in Sustainable Agriculture. 2014, Springer, 101–130.
Qian, J., Kwon, S.-W., Parker, M.A., rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol. Lett. 219 (2003), 159–165.
Ramirez, C., Alexander, M., Evidence suggesting protozoan predation on Rhizobium associated with germinating-seeds and in the rhizosphere of beans (Phaseolus vulgaris L.). Appl. Environ. Microbiol. 40 (1980), 492–499.
Rashid, M.H.-o., Schäfer, H., Gonzalez, J., Wink, M., Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst. Appl. Microbiol. 35 (2012), 98–109.
Rivas, R., García-Fraile, P., Velázquez, E., Taxonomy of bacteria nodulating legumes. Microbiol. Insights, 2, 2009, 51.
Sadowsky, M.J., Tully, R.E., Cregan, P.B., Keyser, H.H., Genetic diversity in Bradyrhizobium japonicum serogroup-123 and its relation to genotype-specific nodulation of soybean. Appl. Environ. Microbiol. 53 (1987), 2624–2630.
Sanchez-Juanes, F., Ferreira, L., Alonso de la Vega, P., Valverde, A., Leon Barrios, M., Rivas, R., Mateos, P.F., Martinez-Molina, E., Manuel Gonzalez-Buitrago, J., Trujillo, M.E., Velazquez, E., MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: application to the identification of Lupinus nodulating strains. Syst. Appl. Microbiol. 36 (2013), 565–571.
Silva, F.V., Simoes-Araujo, J.L., Silva Junior, J.P., Xavier, G.R., Rumjanek, N.G., Genetic diversity of rhizobia isolates from amazon soils using cowpea (Vigna unguiculata) as trap plant. Braz. J. Microbiol. 43 (2012), 682–691.
Singhal, N., Kumar, M., Kanaujia, P.K., Virdi, J.S., MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front. Microbiol., 6, 2015.
Somasegaran, P., Hoben, H.J., Somasegaran, P., Hoben, H.J., Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. 1994, Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, New York 10010 USA; Springer-Verlag, H eidelberger Platz 3, D-1000 Berlin, Germany.
Sprent, J.I., Odee, D.W., Dakora, F.D., African legumes: a vital but under-utilized resource. J. Exp. Bot. 61 (2010), 1257–1265.
Stępkowski, T., Watkin, E., McInnes, A., Gurda, D., Gracz, J., Steenkamp, E.T., Distinct Bradyrhizbium communities nodulate legumes native to temperate and tropical monsoon Australia. Mol. Phylogenet. Evol. 63 (2012), 265–277.
Steenkamp, E.T., Stępkowski, T., Przymusiak, A., Botha, W.J., Law, I.J., Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol. Phylogenet. Evol. 48 (2008), 1131–1144.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 (2013), 2725–2729.
Uhlik, O., Strejcek, M., Junkova, P., Sanda, M., Hroudova, M., Vlcek, C., Mackova, M., Macek, T., Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl. Environ. Microbiol. 77 (2011), 6858–6866.
Van Berkum, P., Evidence for a third uptake hydrogenase phenotype among the soybean bradyrhizobia. Appl. Environ. Microbiol. 56 (1990), 3835–3841.
Wade, T.K., Le Quere, A., Laguerre, G., N'Zoue, A., Ndione, J.-A., dorego, F., Sadio, O., Ndoye, I., Neyra, M., Eco-geographical diversity of cowpea bradyrhizobia in Senegal is marked by dominance of two genetic types. Syst. Appl. Microbiol. 37 (2014), 129–139.
Walkley, A., Black, I.A., An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37 (1934), 29–38.
Wang, L., Cao, Y., Wang, E.T., Qiao, Y.J., Jiao, S., Liu, Z.S., Zhao, L., Wei, G.H., Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst. Appl. Microbiol. 39 (2016), 211–219.
Wasike, V., Lesueur, D., Wachira, F., Mungai, N.W., Mumera, L., Sanginga, N., Mburu, H., Mugadi, D., Wango, P., Vanlauwe, B., Genetic diversity of indigenous Bradyrhizobium nodulating promiscuous soybean [Glycine max (L.) Merr.] varieties in Kenya: impact of phosphorus and lime fertilization in two contrasting sites. Plant Soil 322 (2009), 151–163.
Zengeni, R., Mpepereki, S., Giller, K.E., Manure and soil properties affect survival and persistence of soyabean nodulating rhizobia in smallholder soils of Zimbabwe. Appl. Soil Ecol. 32 (2006), 232–242.
Zhang, W.T., Yang, J.K., Yuan, T.Y., Zhou, J.C., Genetic diversity and phylogeny of indigenous rhizobia from cowpea [Vigna unguiculata (L.) Walp.]. Biol. Fertil. Soils 44 (2007), 201–210.
Zhang, Y.M., Li, Y. Jr., Chen, W.F., Wang, E.T., Tian, C.F., Li, Q.Q., Zhang, Y.Z., Sui, X.H., Chen, W.X., Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl. Environ. Microbiol. 77 (2011), 6331–6342.
Ziegler, D., Mariotti, A., Pflueger, V., Saad, M., Vogel, G., Tonolla, M., Perret, X., In situ identification of plant-invasive bacteria with MALDI-TOF mass spectrometry. PLoS One, 7, 2012, e31789.
Ziegler, D., Pothier, J.F., Ardley, J., Fossou, R.K., Pflüger, V., De Meyer, S., Vogel, G., Tonolla, M., Howieson, J., Reeve, W., Perret, X., Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl. Microbiol. Biotechnol. 99 (2015), 5547–5562.
Zilli, J.E., Valisheski, R.R., Freire, F.R., Neves, M.C.P., Rumjanek, N.G., Assessment of cowpea Rhizobium diversity in Cerrado areas of Northeastern Brazil. Braz. J. Microbiol. 35 (2004), 281–287.
de Souza Moreira, F.M., Cruz, L., De Faria, S.M., Marsh, T., Martínez-Romero, E., de Oliveira Pedrosa, F., Pitard, R.M., Young, J.P.W., Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst. Appl. Microbiol. 29 (2006), 197–206.
van Veen, J.A., van Overbeek, L.S., van Elsas, J.D., Fate and activity of microorganisms introduced into soil. Microbiol. Mol. Biol. Rev. 61 (1997), 121–135.