[en] Purpose: Green manuring can increase the plant available fraction of zinc (Zn) in soil, making it a potential approach to increase wheat Zn concentrations and fight human Zn deficiency. We tested whether green manure increases the ability of both the native soil bacteria and inoculated Zn solubilizing bacteria (ZSB) to mobilize Zn. Methods: Wheat was grown in a pot experiment with the following three factors (with or without); (i) clover addition; (ii) soil x-ray irradiation (i.e. elimination of the whole soil biota followed by re-inoculation with the native soil bacteria); and (iii) ZSB inoculation. The incorporation of clover in both the irradiated and the ZSB treatments allowed us to test green manure effects on the mobilization of Zn by indigenous soil bacteria as well as by inoculated strains. Results: Inoculation with ZSB did neither increase soil Zn availability nor wheat Zn uptake. The highest soil Zn availabilities were found when clover was incorporated, particularly in the irradiated soils (containing only soil bacteria). This was partly associated with the stimulation of bacterial activity during the decomposition of the incorporated green manure. Conclusion: The results support that the activity of soil bacteria is intimately involved in the mobilization of Zn following the incorporation of green manure.
Disciplines :
Agriculture & agronomy
Author, co-author :
Costerousse, Benjamin ; Group of Plant Nutrition, Institute of Agricultural Sciences (IAS), ETH Zurich, Lindau, Switzerland
Quattrini, Joel; Group of Plant Nutrition, Institute of Agricultural Sciences (IAS), ETH Zurich, Lindau, Switzerland
Grüter, Roman; Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, Switzerland ; Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
Frossard, Emmanuel; Group of Plant Nutrition, Institute of Agricultural Sciences (IAS), ETH Zurich, Lindau, Switzerland
Thonar, Cécile ; Université de Liège - ULiège > Département GxABT > Plant Sciences ; Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
Language :
English
Title :
Green manure effect on the ability of native and inoculated soil bacteria to mobilize zinc for wheat uptake (Triticum aestivum L.)
Publication date :
October 2021
Journal title :
Plant and Soil
ISSN :
0032-079X
eISSN :
1573-5036
Publisher :
Springer Science and Business Media Deutschland GmbH
ETH Zürich - Eidgenössische Technische Hochschule Zürich
Funding text :
We thank Ismail Cakmak (Sabanci University, Istanbul) and Jochen Mayer (Agroscope, Zurich) for providing the soils, Rainer Schulin and Susan Tandy (Group of Soil Protection, Institute of Terrestrial Ecosystems, ETH Zurich) for fruitful discussions. We are grateful to Ekaterina Pushkareva for her help with the manuscript submission. We also acknowledge the Mercator Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation for funding this project. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.We thank Ismail Cakmak (Sabanci University, Istanbul) and Jochen Mayer (Agroscope, Zurich) for providing the soils, Rainer Schulin and Susan Tandy (Group of Soil Protection, Institute of Terrestrial Ecosystems, ETH Zurich) for fruitful discussions. We are grateful to Ekaterina Pushkareva for her help with the manuscript submission. We also acknowledge the Mercator Research Program of the ETH Zurich World Food System Center and the ETH Zurich Foundation for funding this project. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Abaid-Ullah M, Hassan MN, Jamil M, Brader G, Shah MKN, Sessitsch A, Hafeez FY (2015) Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int J Agric Biol 17:51–60
Aghili F, Gamper HA, Eikenberg J, Khoshgoftarmanesh AH, Afyuni M, Schulin R, Jansa J, Frossard E (2014) Green manure addition to soil increases grain zinc concentration in bread wheat. PLoS ONE 9:e101487. 10.1371/journal.pone.0101487 DOI: 10.1371/journal.pone.0101487
Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548. 10.1007/s10653-009-9255-4 DOI: 10.1007/s10653-009-9255-4
Bingeman CW, Varner J, Martin W (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am J 17:34–38 DOI: 10.2136/sssaj1953.03615995001700010008x
Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2016) Scheffer/Schachtschabel soil science. Springer, Berlin DOI: 10.1007/978-3-642-30942-7
Bobrov AG, Kirillina O, Fetherston JD, Miller MC, Burlison JA, Perry RD (2014) The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol Microbiol 93:759–775. 10.1111/mmi.12693 DOI: 10.1111/mmi.12693
Brandel J, Humbert N, Elhabiri M, Schalk IJ, Mislin GLA, Albrecht-Gary A-M (2012) Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans 41:2820–2834. 10.1039/c1dt11804h DOI: 10.1039/c1dt11804h
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. 10.1111/j.1469-8137.2007.01996.x DOI: 10.1111/j.1469-8137.2007.01996.x
Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17. 10.1007/s11104-007-9466-3 DOI: 10.1007/s11104-007-9466-3
Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Erenoglu B, Braun HJ (1996) Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant Soil 180:165–172. 10.1007/bf00015299 DOI: 10.1007/bf00015299
Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10–20. 10.3389/fpls.2014.00053 DOI: 10.3389/fpls.2014.00053
Costerousse B, Schönholzer-Mauclaire L, Frossard E, Thonar C (2018) Identification of heterotrophic Zinc mobilization processes among bacterial strains isolated from wheat rhizosphere (Triticum aestivum L.). Appl Environ Microbiol 84:e01715-01717. 10.1128/AEM.01715-17 DOI: 10.1128/AEM.01715-17
Doran JW, Smith MS (1991) Role of cover crops in nitrogen cycling. In: Hargroce LW (ed) Cover crops for clean water. SWCS, Ankeny, pp 85–90
Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6. 10.1111/j.1574-6968.2002.tb11277.x DOI: 10.1111/j.1574-6968.2002.tb11277.x
Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866. 10.1016/j.soilbio.2004.10.013 DOI: 10.1016/j.soilbio.2004.10.013
Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879. 10.1002/(sici)1097-0010(20000515)80:7%3c861::aid-jsfa601%3e3.3.co;2-g DOI: 10.1002/(sici)1097-0010(20000515)80:7<861::aid-jsfa601>3.3.co;2-g
Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119. 10.1016/j.goederma.2004.01.002 DOI: 10.1016/j.goederma.2004.01.002
Glasauer S, Beveridge T, Burford E, Harper F, Gadd G (2004) Metals and metalloids, transformation by microorganisms. In: Hillel D, Rosenzweig C, Powlson DS, Scow KM, Singer MJ, Sparks DL, Hatfield J (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 438–447
Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol 1:22. 10.1186/1745-6673-1-22 DOI: 10.1186/1745-6673-1-22
Graham RD, Welch RM (1996) Breeding for staple food crops with high micronutrient density: working papers on agricultural strategies for micronutrients, No.3. International Food Policy Institute, Washington DC
Gramlich A, Tandy S, Frossard E, Eikenberg J, Schulin R (2013) Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role? J Agric Food Chem 61:10409–10417. 10.1021/jf401117d DOI: 10.1021/jf401117d
Green C, Blackmer A (1995) Residue decomposition effects on nitrogen availability to corn following corn or soybean. Soil Sci Soc Am J 59:1065–1070 DOI: 10.2136/sssaj1995.03615995005900040016x
Grüter R, Costerousse B, Bertoni A, Mayer J, Thonar C, Frossard E, Schulin R, Tandy S (2017a) Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages. Sci Total Environ 599:1330–1343. 10.1016/j.scitotenv.2017.05.070 DOI: 10.1016/j.scitotenv.2017.05.070
Grüter R, Meister A, Schulin R, Tandy S (2017b) Green manure effects on zinc and cadmium accumulation in wheat grains (Triticum aestivum L.) on high and low zinc soils. Plant Soil 1–17. https://doi.org/10.1007/s11104-017-3486-4
Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. 10.1023/a:1020663916259 DOI: 10.1023/a:1020663916259
Habiby H, Afyuni M, Khoshgoftarmanesh AH, Schulin R (2014) Effect of preceding crops and their residues on availability of zinc in a calcareous Zn-deficient soil. Biol Fertil Soils 50:1061–1067. 10.1007/s00374-014-0926-7 DOI: 10.1007/s00374-014-0926-7
Hafeez FY, Abaid-Ullah M, Hassan MN (2013) Plant growth-promoting rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. In: Maheshwari DK, Saraf M, Aeron A (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 217–235 DOI: 10.1007/978-3-642-37241-4_9
Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116:73–78. 10.1034/j.1399-3054.2002.1160109.x DOI: 10.1034/j.1399-3054.2002.1160109.x
IUSS Working Group WRB (2014) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome
Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488. 10.1051/agro:2003013 DOI: 10.1051/agro:2003013
Javed H, Naeem A, Rengel Z, Dahlawi S (2016) Timing of foliar Zn application plays a vital role in minimizing Cd accumulation in wheat. Environ Sci Pollut Res Int 23:16432–16439. 10.1007/s11356-016-6822-y DOI: 10.1007/s11356-016-6822-y
Khande R, Sharma SK, Ramesh A, Sharma MP (2017) Zinc solubilizing Bacillus cereus and related species modulates growth, yield and zinc biofortification of soybean and wheat seeds cultivated in central India. Rhizosphere 4:126–138. 10.1016/j.rhisph.2017.09.002 DOI: 10.1016/j.rhisph.2017.09.002
Khoshgoftar A, Shariatmadari H, Karimian N, Kalbasi M, Van der Zee S, Parker D (2004) Salinity and zinc application effects on phytoavailability of cadmium and zinc. Soil Sci Soc Am J 68:1885–1889. 10.2136/sssaj2004.1885 DOI: 10.2136/sssaj2004.1885
Kothari SK, Marschner H, Romheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185. 10.1007/BF00009447 DOI: 10.1007/BF00009447
Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem 87:1–9. 10.1094/cchem-87-1-0001 DOI: 10.1094/cchem-87-1-0001
Leach LH, Morris JC, Lewis TA (2007) The role of the siderophore pyridine-2, 6-bis (thiocarboxylic acid) (PDTC) in zinc utilization by Pseudomonas putida DSM 3601. Biometals 20:717. 10.1007/s10534-006-9035-x DOI: 10.1007/s10534-006-9035-x
Lensi R, Lescure C, Steinberg C, Savoie J-M, Faurie G (1991) Dynamics of residual enzyme activities, denitrification potential, and physico-chemical properties in a γ-sterilized soil. Soil Biol Biochem 23:367–373. 10.1016/0038-0717(91)90193-N DOI: 10.1016/0038-0717(91)90193-N
Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467. 10.1007/s11104-009-0025-y DOI: 10.1007/s11104-009-0025-y
Marschner B, Bredow A (2002) Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilised and biologically active soil samples. Soil Biol Biochem 34:459–466. 10.1016/S0038-0717(01)00203-6 DOI: 10.1016/S0038-0717(01)00203-6
Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc co mpounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141. 10.1016/s0038-0717(02)00247-x DOI: 10.1016/s0038-0717(02)00247-x
McNamara N, Black H, Beresford N, Parekh N (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24:117–132. 10.1016/S0929-1393(03)00073-8 DOI: 10.1016/S0929-1393(03)00073-8
Meyer G, Bünemann EK, Frossard E, Maurhofer M, Mäder P, Oberson A (2017a) Gross phosphorus fluxes in a calcareous soil inoculated with Pseudomonas protegens CHA0 revealed by 33P isotopic dilution. Soil Biol Biochem 104:81–94. 10.1016/j.soilbio.2016.10.001 DOI: 10.1016/j.soilbio.2016.10.001
Meyer G, Frossard E, Mäder P, Nanzer S, Randall D, Udert K, Oberson A (2017b) Water soluble phosphate fertilizers for crops grown in calcareous soils–an outdated paradigm for recycled phosphorus fertilizers? Plant Soil 1–22. https://doi.org/10.1007/s11104-017-3545-x
Mosimann C, Oberhänsli T, Ziegler D, Nassal D, Kandeler E, Boller T, Mäder P, Thonar C (2017) Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Front Microbiol 7:2150. 10.3389/fmicb.2016.02150 DOI: 10.3389/fmicb.2016.02150
Muehe EM, Weigold P, Adaktylou IJ, Planer-Friedrich B, Kraemer U, Kappler A, Behrens S (2015) Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri. Appl Environ Microbiol 81:2173–2181. 10.1128/AEM.03359-14 DOI: 10.1128/AEM.03359-14
Nan Z, Li J, Zhang J, Cheng G (2002) Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions. Sci Total Environ 285:187–195. 10.1016/S0048-9697(01)00919-6 DOI: 10.1016/S0048-9697(01)00919-6
Nolan AL, Lombi E, McLaughlin MJ (2003) Metal bioaccumulation and toxicity in soils - Why bother with speciation? Aust J Chem 56:77–91. 10.1071/ch02226 DOI: 10.1071/ch02226
Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9:e90841. 10.1371/journal.pone.0090841 DOI: 10.1371/journal.pone.0090841
Oberholzer HR, Leifeld J, Mayer J (2014) Changes in soil carbon and crop yield over 60 years in the Zurich Organic Fertilization Experiment, following land-use change from grassland to cropland. J Plant Nutr Soil Sci 177:696–704. 10.1002/jpln.201300385 DOI: 10.1002/jpln.201300385
Oliver DP, Hannam R, Tiller K, Wilhelm N, Merry RH, Cozens G (1994) The effects of zinc fertilization on cadmium concentration in wheat grain. J Environ Qual 23:705–711. 10.2134/jeq1994.00472425002300040013x DOI: 10.2134/jeq1994.00472425002300040013x
Ortas I (2012) Do maize and pepper plants depend on mycorrhizae in terms of phosphorus and zinc uptake? J Plant Nutr 35:1639–1656. 10.1080/01904167.2012.698346 DOI: 10.1080/01904167.2012.698346
Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5:333–340. 10.1038/nchembio.166 DOI: 10.1038/nchembio.166
Passioura JB (2006) The perils of pot experiments. Funct Plant Biol 33:1075–1079. 10.1071/FP06223 DOI: 10.1071/FP06223
Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161. 10.1016/S0007-1536(70)80110-3 DOI: 10.1016/S0007-1536(70)80110-3
Puschenreiter M, Gruber B, Wenzel WW, Schindlegger Y, Hann S, Spangl B, Schenkeveld WD, Kraemer SM, Oburger E (2017) Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ Exp Bot 138:67–76. 10.1016/j.envexpbot.2017.03.011 DOI: 10.1016/j.envexpbot.2017.03.011
Salonius P, Robinson J, Chase F (1967) A comparison of autoclaved and gamma-irradiated soils as media for microbial colonization experiments. Plant Soil 27:239–248. 10.1007/BF01373392 DOI: 10.1007/BF01373392
Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798. 10.1016/j.chemosphere.2006.07.067 DOI: 10.1016/j.chemosphere.2006.07.067
Sarwar N, Bibi S, Ahmad M, Ok YS (2014) Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ Earth Sci 71:1663–1672. 10.1007/s12665-013-2570-1 DOI: 10.1007/s12665-013-2570-1
Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536. 10.1016/j.ecoenv.2015.09.011 DOI: 10.1016/j.ecoenv.2015.09.011
Sharma SK, Sharma MP, Ramesh A, Joshi OP (2012) Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J Microbiol Biotechnol 22:352–359. 10.4014/jmb.1106.05063 DOI: 10.4014/jmb.1106.05063
Siddique S, Hamid M, Tariq A, Kazi AG (2014) Organic farming: the return to nature. In: Ahmad P, Wani M, Azooz M, Phan Tran LS (eds) Improvement of crops in the era of climatic changes. Springer, New York, pp 249–281
Singh D, Rajawat MVS, Kaushik R, Prasanna R, Saxena AK (2017) Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 1–10.10.1007/s11104-017-3189-x
Soltani S, Khoshgoftarmanesh AH, Afyuni M, Shrivani M, Schulin R (2014) The effect of preceding crop on wheat grain zinc concentration and its relationship to total amino acids and dissolved organic carbon in rhizosphere soil solution. Biol Fertil Soils 50:239–247. 10.1007/s00374-013-0851-1 DOI: 10.1007/s00374-013-0851-1
Sunithakumari K, Devi SNP, Vasandha S (2016) Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Curr Sci 110:196–205. 10.18520/cs/v110/i2/196-205 DOI: 10.18520/cs/v110/i2/196-205
Tandy S, Mundus S, Yngvesson J, de Bang TC, Lombi E, Schjørring JK, Husted S (2011) The use of DGT for prediction of plant available copper, zinc and phosphorus in agricultural soils. Plant Soil 346:167–180. 10.1007/s11104-011-0806-y DOI: 10.1007/s11104-011-0806-y
Thompson J (1990) Treatments to eliminate root-lesion nematode (Pratylenchus Thornei Sher & Allen) from a vertisol. Nematologica 36:123–127. 10.1139/g06-090 DOI: 10.1139/g06-090
Trevors J (1996) Sterilization and inhibition of microbial activity in soil. J Microbiol Methods 26:53–59. 10.1016/0167-7012(96)00843-3 DOI: 10.1016/0167-7012(96)00843-3
Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371:299–312. 10.1007/s11104-013-1670-8 DOI: 10.1007/s11104-013-1670-8
White C (1993) The zinc requirements of grazing ruminants. In: Robson AD (ed) Developments in plant and soil sciences. Springer, Dordrecht, pp 197–197
Wiggenhauser M, Bigalke M, Imseng M, Müller M, Keller A, Murphy K, Kreissig K, Rehkamper M, Wilcke W, Frossard E (2016) Cadmium Isotope Fractionation in Soil-Wheat Systems. Environ Sci Technol 50:9223–9231. 10.1021/acs.est.6b01568 DOI: 10.1021/acs.est.6b01568