Article (Scientific journals)
Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions
Nan, Yang; Ser, Javier Del; Walsh, Simon et al.
2022In Information Fusion, 82, p. 99 - 122
Peer Reviewed verified by ORBi
 

Files


Full Text
20220122_Data-harmonisation-for-information-fusion-in-digital-healthcare_2022_Informa.pdf
Publisher postprint (6.87 MB) Creative Commons License - Attribution
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
data harmonisation; data standardisation; domain adaptation; Information fusion; reproducibility; Computational data; Data harmonization; Data standardization; Domain adaptation; Evaluation metrics; Future research directions; Meta-analysis; Reproducibilities; State of the art; Systematic Review; Software; Signal Processing; Information Systems; Hardware and Architecture
Abstract :
[en] Removing the bias and variance of multicentre data has always been a challenge in large scale digital healthcare studies, which requires the ability to integrate clinical features extracted from data acquired by different scanners and protocols to improve stability and robustness. Previous studies have described various computational approaches to fuse single modality multicentre datasets. However, these surveys rarely focused on evaluation metrics and lacked a checklist for computational data harmonisation studies. In this systematic review, we summarise the computational data harmonisation approaches for multi-modality data in the digital healthcare field, including harmonisation strategies and evaluation metrics based on different theories. In addition, a comprehensive checklist that summarises common practices for data harmonisation studies is proposed to guide researchers to report their research findings more effectively. Last but not least, flowcharts presenting possible ways for methodology and metric selection are proposed and the limitations of different methods have been surveyed for future research.
Disciplines :
Computer science
Author, co-author :
Nan, Yang;  National Heart and Lung Institute, Imperial College London, London, Ireland
Ser, Javier Del;  Department of Communications Engineering, University of the Basque Country UPV/EHU, Bilbao, Spain ; TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain
Walsh, Simon;  National Heart and Lung Institute, Imperial College London, London, Ireland
Schönlieb, Carola;  Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, Ireland
Roberts, Michael;  Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, Ireland ; Oncology R&D, AstraZeneca, Cambridge, Ireland
Selby, Ian;  Department of Radiology, University of Cambridge, Cambridge, Ireland
Howard, Kit;  Clinical Data Interchange Standards Consortium, Austin, United States
Owen, John;  Clinical Data Interchange Standards Consortium, Austin, United States
Neville, Jon;  Clinical Data Interchange Standards Consortium, Austin, United States
GUIOT, Julien  ;  Centre Hospitalier Universitaire de Liège - CHU > > Service de pneumologie - allergologie
Ernst, Benoit  ;  Université de Liège - ULiège > Département des sciences cliniques > Pneumologie - Allergologie
Pastor, Ana;  QUIBIM, Valencia, Spain
Alberich-Bayarri, Angel;  QUIBIM, Valencia, Spain
Menzel, Marion I.;  Technische Hochschule Ingolstadt, Ingolstadt, Germany ; GE Healthcare GmbH, Germany
Walsh, Sean;  Radiomics (Oncoradiomics SA), Liège, Belgium
Vos, Wim;  Radiomics (Oncoradiomics SA), Liège, Belgium
Flerin, Nina;  Radiomics (Oncoradiomics SA), Liège, Belgium
Charbonnier, Jean-Paul;  Thirona, Nijmegen, Netherlands
van Rikxoort, Eva;  Thirona, Nijmegen, Netherlands
Chatterjee, Avishek;  Department of Precision Medicine, Maastricht University, Maastricht, Netherlands
Woodruff, Henry;  Department of Precision Medicine, Maastricht University, Maastricht, Netherlands
Lambin, Philippe;  Department of Precision Medicine, Maastricht University, Maastricht, Netherlands
Cerdá-Alberich, Leonor;  Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
Martí-Bonmatí, Luis;  Medical Imaging Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
Herrera, Francisco;  Department of Computer Sciences and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) University of Granada, Granada, Spain ; Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
Yang, Guang;  National Heart and Lung Institute, Imperial College London, London, Ireland ; Cardiovascular Research Centre, Royal Brompton Hospital, London, Ireland ; School of Biomedical Engineering & Imaging Sciences, King's College London, London, Ireland
More authors (16 more) Less
Language :
English
Title :
Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions
Publication date :
June 2022
Journal title :
Information Fusion
ISSN :
1566-2535
eISSN :
1872-6305
Publisher :
Elsevier B.V.
Volume :
82
Pages :
99 - 122
Peer reviewed :
Peer Reviewed verified by ORBi
Funding text :
This study was supported in part by the European Research Council Innovative Medicines Initiative (DRAGON # , H2020-JTI-IMI2 101005122 ), the AI for Health Imaging Award (CHAIMELEON ## , H2020-SC1-FA-DTS-2019–1 952172), the UK Research and Innovation Future Leaders Fellowship ( MR/V023799/1 ), the British Heart Foundation (Project Number: TG/18/5/34111, PG/16/78/32402), the SABRE project supported by Boehringer Ingelheim Ltd, the European Union's Horizon 2020 research and innovation programme (ICOVID, 101016131), the Euskampus Foundation (COVID19 Resilience, Ref. COnfVID19), and the Basque Government (consolidated research group MATHMODE, Ref. IT1294–19, and 3KIA project from the ELKARTEK funding program, Ref. KK-2020/00049).This study was supported in part by the European Research Council Innovative Medicines Initiative (DRAGON#, H2020-JTI-IMI2 101005122), the AI for Health Imaging Award (CHAIMELEON##, H2020-SC1-FA-DTS-2019?1 952172), the UK Research and Innovation Future Leaders Fellowship (MR/V023799/1), the British Heart Foundation (Project Number: TG/18/5/34111, PG/16/78/32402), the SABRE project supported by Boehringer Ingelheim Ltd, the European Union's Horizon 2020 research and innovation programme (ICOVID, 101016131), the Euskampus Foundation (COVID19 Resilience, Ref. COnfVID19), and the Basque Government (consolidated research group MATHMODE, Ref. IT1294?19, and 3KIA project from the ELKARTEK funding program, Ref. KK-2020/00049). # DRAGON Consortium:, Xiaodan Xinga, Ming Lia, Scott Wagersb, Rebecca Bakerc, Cosimo Nardid, Brice van Eeckhoute, Paul Skippf, Pippa Powellg, Miles Carrollh, Alessandro Ruggieroi, Muhunthan Thillaii, Judith Babari, Evis Salai, William Murchj, Julian Hiscoxk, Diana Barallel, Nicola Sverzellatim, ## CHAIMELEON Consortium:, Ana Miguel Blancon, Fuensanta Bellv?s Batallero, Mario Aznarp, Amelia Suarezp, Sergio Figueirasq, Katharina Krischakr, Monika Hierathr, Yisroel Mirskys, Yuval Elovicis, Jean Paul Beregit, Laure Fourniert, Francesco Sardanelliu, Tobias Penzkoferv, Karine Seymourw, Nacho Blanquerx, Emanuele Neriy, Andrea Laghiz, Manuela Fran?aaa, Ricard Martinezab, a National Heart and Lung Institute, Imperial College London, London, UK, b BioSci Consulting, Maasmechelen, Belgium, c Clinical Data Interchange Standards Consortium, Austin, Texas, United States, d University of Florence, Firenze, Italy, e Medical Cloud Company, Li?ge, Belgium, f TopMD, Southampton, UK, g European Lung Foundation, Sheffield, UK, h Department of Health, Public Health England, London, UK, i Department of Radiology, University of Cambridge, Cambridge, UK, j Owlstone Medical, Cambridge, UK, k University of Liverpool, Liverpool, UK, l University of Southampton, Southampton, UK, m University of Parma, Parma, Italy, n Medical Imaging Department, Hospital Universitari i Polit?cnic La Fe, Valencia, Spain, o QUIBIM, Valencia, Spain, p Matical Innovation, Madrid, Spain, q Bah?a Software, A Coru?a, Spain, r European Institute for Biomedical Imaging Research, Vienna, Austria, s Ben Gurion University of the Negev, Be'er Sheva, Israel, t Le Coll?ge des Enseignants en Radiologie de France, France, u Research Hospital Policlinico San Donato, Milan, Italy, v Charit? ? Universit?tsmedizin Berlin, Berlin, Germany, w Medexprim, Lab?ge, France, x Valencia Polytechnic University, Valencia, Spain, y University of Pisa, Pisa, Italy, z Sapienza University of Rome, Rome, Italy, aa The Centro Hospitalar Universit?rio do Porto, Portugal, ab University of Valencia, Valencia, Spain
Available on ORBi :
since 03 May 2022

Statistics


Number of views
53 (3 by ULiège)
Number of downloads
36 (0 by ULiège)

Scopus citations®
 
53
Scopus citations®
without self-citations
49
OpenCitations
 
15

Bibliography


Similar publications



Contact ORBi